
Context-Oriented Domain Analysis

Brecht Desmet, Jorge Vallejos, Pascal Costanza,
Wolfgang De Meuter, and Theo D’Hondt

Programming Technology Lab, Vrije Universiteit Brussel,
Pleinlaan 2, B-1050 Brussel, Belgium

Abstract. Context-aware systems are software systems which adapt
their behaviour according to the context of use. The requirements en-
gineering phase is recognized as a primordial step to develop robust
implementations of context-aware systems since it establishes a com-
prehensive understanding of the problem space. This paper proposes the
Context-Oriented Domain Analysis (CODA) model which is a special-
ized approach for analyzing, structuring, and formalizing the software
requirements of context-aware systems.

1 Introduction

The Ambient Intelligence vision (IST Advisory Group, 2003) describes scenarios
in which people are pervasively surrounded by interconnected embedded and
mobile devices. As the context of such devices continuously changes over time,
context-aware systems adapt their behaviour accordingly in order to suit the
user’s expectations more closely. The robust implementation of context-aware
systems is founded on a comprehensive understanding of the problem domain at
the early stages of software development. Requirements engineering is specifically
concerned with producing specifications for software systems that satisfy the
stakeholders needs and can be implemented, deployed, and maintained.

Traditional methods in requirements engineering, like use cases [1], aim at
capturing functional requirements by looking at the interactions between actors
and systems. Our practical experiments however point out that these methods
do not closely match the niche domain of context-aware systems. This is mainly
caused by the fact that context-aware systems add a new dimension to the actor-
system interaction by incorporating additional information from the (physical
or software) environment: so-called context information. We define the latter as
any piece of information which is computationally accessible. [2]

Such a refined parameterization of the actor-system interaction has a strong
impact on the specification of functional requirements. Whereas in monolithic ap-
plications, an actor’s action typically corresponds to a single behaviour, context-
aware systems have multiple behavioural variations associated to a single action.
The choice of the appropriate variation is determined by the context in which
the system is used.

We claim that as soon as context-aware requirements become the rule rather
than the exception, more adequate modelling techniques are required to capture

In: B. Kokinov, D.C. Richardson, T.R. Roth-Berghofer, L. Vieu (Eds.):
CONTEXT 2007, LNAI 4635, pp. 178-191, 2007.
© Springer-Verlag Berlin Heidelberg 2007.
http://dx.doi.org/10.1007/978-3-540-74255-5_14

the contextual influence on software systems. The contribution of this paper
consists of a new modelling approach, called Context-Oriented Domain Analysis
(CODA), which is a systematic approach for gathering requirements of context-
aware systems. CODA is intended to be relatively simple and concise to lower
the accessibility barrier for various kinds of stakeholders while being expressive
enough to evolve towards the solution space. In contrast to general-purpose
methods for requirements analysis, like use cases, goal models [3], or problem
frames [4], CODA is solely specialized for context-aware (functional and non-
functional) requirements.

This paper is organised as follows. Section 2 presents a context-aware scenario
which is used throughout this paper. Next, in Section 3, we explain the CODA
approach thoroughly by means of this context-aware scenario. We validate our
approach in Section 4 by showing how the various concepts of CODA can be
mapped to decision tables. Finally, Section 6 identifies some future work and
gives the conclusion.

2 Motivating example: context-aware cell phone

We introduce an intelligent cell phone as an illustration of a context-aware sys-
tem. In the following subsections, we briefly discuss the requirements of this
context-aware cell phone in an informal manner. We take up again these re-
quirements in Section 3 to illustrate our proposed CODA approach.

2.1 Basic behaviour

We first present the default context-unaware behaviour of the cell phone which
we call the basic behaviour. This behaviour consists of the following functionali-
ties:

– Incoming communication (R1)
• play ring sound whenever somebody calls or sends a message (R1.1);
• provide the means to answer phone calls and read messages (R1.2);

– Outgoing communication (R2)
• provide means to make phone calls and send messages (R2.1);
• use default mobile connection for outgoing communication (R2.2);

– Shared by incoming and outgoing communication (R3)
• maintain a contact list and journal (R3.1).

2.2 Behavioural variations

We now increase the user experience of this cell phone by making it context-
aware. In the following requirements description, we introduce some behaviour
which deviates from the basic behaviour, depending on the context in which the
cell phone is used. First, we present a group of behavioural variations which
affect the Incoming Communication (R1).

– If the battery level is low, ignore all phone calls except for contacts classified
as VIP (R1.3).

– If the time is between 11pm and 8am, activate the answering machine for
incoming phone calls and the auto-reply service for messages. Add voice and
text messages to the journal. (R1.4) The outcome of this behaviour is one
of the following cases:
• Everything turned out ok (R1.4.1).
• A predefined list of callers can circumvent the answering machine by

pressing the # button e.g. for emergency reasons (R1.4.2).
• If the answering machine is unavailable because there is no memory left

for voice messages, the cell phone gives an auditive signal (R1.4.3).
– If the user is in a meeting, redirect all calls and messages to the secretary

(R1.5).

Next, there is a series of behavioural variations which affect the Outgoing
Communication:

– The user can switch on a service which counts the amount of outgoing com-
munication. This information is interesting e.g. for estimating costs. The
concrete behaviour depends on the type of outgoing communication. (R2.3)
• In case of phone call, measure the duration of the calls (R2.3.1).
• In case of messages, count the number of sent data packages (R2.3.2).

– If there is a WiFi connection available, it is tried to make phone calls or send
messages via VoIP since this is cheaper for the user (R2.4).

– If there is a GPRS connection available, it is tried to send messages using
TCP/IP also since this is cheaper (R2.5).

In general, switches between behaviour are only possible between incoming
or outgoing phone calls or messages (R4).

3 Principles of CODA

Context-Oriented Domain Analysis (CODA) is an approach for modelling context-
aware software requirements in a structured, well-defined, and unambiguous way.
The CODA model enforces software engineers to think of context-aware systems
as pieces of basic context-unaware behaviour which can be refined. The driving
force of the refinement is the context in which the system is used. We therefore
prefer the term context-dependent adaptation which is defined as follows: A unit
of behaviour which adapts a subpart of a software system only if an associated
context condition is satisfied. The principle of distinguishing basic behaviour and
context-dependent adaptations lays at the heart of our CODA approach.

In this paper, we apply our CODA approach to the requirements description
of a context-aware cell phone (cfr. Section 2), yielding the CODA diagram of
Figure 1. In the following, we discuss the vocabularium of CODA by means of
this concrete example.

Ig
n

o
re

R
e

d
ir
e

c
t

A
n

s
w

e
rm

a
c
h

in
e

In
c
o

m
in

g

C
o

m
m

u
n

ic
a

ti
o

n
O

u
tg

o
in

g

C
o

m
m

u
n

ic
a

ti
o

n

E
m

e
rg

e
n

c
y

O
u

tO
fM

e
m

o
ry

C
o

u
n

te
r

T
im

e
D

a
ta

P

a
c
k
a

g
e

sW
iF

i

G
P

R
S

B
at

te
ry

 =
 L

ow

Lo
ca

tio
n

=
 M

ee
tin

gr
oo

m

11
pm

 <
 T

im
e

<
 8

am

R
es

ul
t =

 E
xc

ep
tio

n

R
es

ul
t =

 O
ve

rf
lo

w

T
yp

e
=

 P
ho

ne
ca

ll
T

yp
e=

M
es

sa
geC
on

ne
ct

io
n

=
 W

ifi
C

on
ne

ct
io

n
=

 G
P

R
S

T
yp

e
=

 M
es

sa
ge

S
w

it
c
h
 =

 O
n

S
h

a
re

d

0
..
.1

1
..
.1

0
..
.1

0
..
.1

C
e

ll
P

h
o

n
e

 B
e

h
a

v
io

u
r

p
e

r
P

h
o

n
e

 C
a

ll
o

r
M

e
s
s
a

g
e

B
a
s
ic

B
e
h
a
v
io

u
r

C
o
n
te

x
t-

D
e
p
e
n
d
e
n
t

B
e
h
a
v
io

u
r

Fig. 1. CODA diagram of the context-aware cell phone.

3.1 Vocabularium

The root node of the CODA diagram refers to all possible combinations of
context-aware behaviour on a per phone call or message basis. The topmost lev-
els always contain the basic context-unaware behaviour, represented by means
of rounded boxes. In the cell phone example, we divided the basic behaviour into
three parts: Incoming Communication (R1), Outgoing Communication (R2), and
Shared (R3). All these subparts are connected to the root via the “consists of”
relationship (). Incoming Communication and Outgoing Communication are
connected to Shared via the “uses” relationship (). Since these are the leaf
nodes of the hierarchical decomposition of the basic behaviour, we also call them
variation points which are subject to further refinement. The level of granularity
to which the basic behaviour should be hierarchically decomposed is an impor-
tant design choice for the modeller. The rule of thumb is to decompose until the
leaf nodes are small and meaningful enough to serve as variation points.

Context-dependent adaptations are represented by means of rectangular
boxes which are attached to relevant variation points (see Figure 2). For example,
the variation point Incoming Communication of Figure 1 has three refinements:
Ignore (R1.3), Redirect (R1.5), and Answermachine (R1.4). Each such context-
dependent adaptation consists of two parts: a context condition which specifies
the applicability of the adaptation (displayed on parent link) and a label which
summarizes the adaptive behaviour (displayed within rectangular box). It is
not allowed to add basic behaviour nodes below context-dependent adaptations,
since this would break the principle of putting the basic behaviour at the topmost
levels of the CODA diagram.

variation

point
adaptation

context

condition

Fig. 2. Variation point refined by context-dependent adaptation.

Relationships The tree structure can be recursively expanded with additional
context-dependent adaptations. To this end, CODA defines three kinds of re-
lationships: inclusions, conditional dependencies, and choice points. The former
two operate only among context-dependent adapations. The latter can be used
among variation points and context-dependent adaptations.

– Inclusion The inclusion relationship (see Figure 3) means that only if adap-
tation A is applicable, the applicability of adaptation B should be verified.
Possibly, adaptations A and B are simultaneously active. For example, if the
counter switch is on (i.e. Switch = On), either Time (see R2.3.1) or Data
Packages adaptation (see R2.3.2) should be included.

– Conditional dependency The conditional dependency relationship (see
Figure 4) has a temporal character: If the return value of adaptation A equals
r, then B should be executed subsequently. For example, if the special button
is pressed (i.e. Result = Exception) while using the answering machine,
callers can circumvent the answering machine (see R1.4.2). Or, if the memory
of the answering machine is full (i.e. Result = Overflow), some signal starts
ringing (R1.4.3).

B
context

condition
A

Fig. 3. Inclusion.

B
result =

r
A

Fig. 4. Conditional dependency.

– Choice point Variation points and context-dependent adaptations can have
multiple context-dependent adaptations associated to them. For example,
Incoming Communication is refined by Ignore, Redirect, and Answerma-
chine. Although the three adaptations can be simultaneously applicable (i.e.
Battery = Low while Location = Meetingroom while 11pm < Time <
8am), the adaptations are semantically conflicting (i.e. one cannot ignore
and redirect phone calls simultaneously). Since it is the responsibility of a
context-aware system to choose a non-conflicting set of adaptations out of a
set of available candidates, we use the term choice point to mark such places
in our CODA diagram. They are graphically denoted with .
Choice points have a multiplicity associated to them. This is a pair con-
sisting of the minimal and maximal number of adaptations to be activated.
For example, the variation point Incoming Communication has multiplicity
“0...1” which means that at most one context-dependent adaptation can be
activated, i.e. either Ignore, Redirect, or Answermachine.

3.2 Resolution strategies

In case of semantic interactions at choice points, a context-aware system should
be able to make autonomous decisions based on some user-defined policy. For
example, in Figure 1, if Battery = Low and Location = Meetingroom, both
Ignore and Redirect adaptations are applicable. However, the multiplicity of the
choice point indicates that at most one adaptation can be activated. For these
situations, we incorporate the ability to associate resolution strategies [5] with
choice points. These strategies unambiguously describe which context-dependent
adaptations should be activated or deactivated in case of semantic interactions.

CODA incorporates by default four resolution strategies: priority, frequency,
timestamps, and case-by-case which are discussed in the remainder of this sec-
tion. From our experience, these strategies seem to appear frequently for a wide
range of scenarios. However, they are not universal. We therefore allow modellers

to combine or refine existing strategies and define new strategies whenever nec-
essary. Graphically, resolution strategies are represented by means of UML-style
stereotypes [6] which are attached to choice points.

Case-by-case The most straightforward option is to enumerate all possible
interactions and their resolutions using relationships like exclusion, inclusion,
etc. Case-by-case is considered as the default strategy and does not require the
mentioning of a stereotype. The details of this resolution strategy are discussed
thoroughly in Section 3.3.

Priority A commonly used strategy is to associate priorities with the alter-
natives. Priorities are good because they are the easiest way to understand by
most stakeholders. For example, Figure 5 associates a priority with each context-
dependent adaptation. These priorities are graphically represented by means of
circles. If multiple adaptations are applicable, the one with the highest priority
will be elected. Unfortunately, priorities are not an all-round solution because of
limited expressiveness.

Ignore

Redirect

Answermachine

<<priority>>

Incoming
Communication

Battery = Low
Location = Meetingroom

11pm < Time < 8am

0...1

1

2

3

Fig. 5. Priority resolution strategy.

Frequency The frequency strategy is an adaptive method which selects context-
dependent adaptations based on their frequency of use in the past.

Timestamps One can associate time stamps to context values to keep track of
the order in which the context evolves. A possible timestamp strategy is to give
preference to the most recent context information.

3.3 Vocabularium of case-by-case resolution strategy

If the user preference does not match an overall resolution strategy (like fre-
quency, priorities, or timestamps), one can use the case-by-case strategy which

is more like a general-purpose approach. The idea of this strategy is to add cross-
reference relationships among interacting context-dependent adaptations to the
CODA diagram. For example, Figure 6 is an extension of the CODA diagram
of Figure 1 which exhibits an example of the case-by-case resolution strategy.
The new relationships are put in bold for clarification. In the remainder of this
section, we discuss the semantics of these relationships.

Ignore

Redirect

Answermachine

Incoming
Communication

Outgoing
Communication

Emergency

OutOfMemory

Counter

Time Data
Packages

WiFi

GPRS

Battery = Low

Location = Meetingroom

11pm < Time < 8am

Result = Exception

Result = Overflow

Type = Phonecall
Type=Message

Connection = Wifi
Connection = GPRS

Type = Message
Switch = On

Shared

0...1

1...1

Result = Failed

1

1
2

Result = Failed

0...1 0...1

Cell Phone Behaviour per
Phone Call or Message

Fig. 6. CODA diagram of context-aware cell phone extended with an example of case-
by-case resolution strategy.

Independence All adaptations that do not have a specific relationship specified
are defined as being independent. This means that they do not semantically
interfere with other adaptations. For example, as derived from Figure 6, it is
possible that Switch = On while Connection = WiFi, so both Counter and
WiFi adaptations are active, operating independently.

Exclusion and Inclusion An adaptation can exclude or include another one.
This is respectively presented in Figure 7 and 8 with a dashed (in case of exclu-
sion) and full (in case of inclusion) arrow between interacting context-dependent
adaptations. Their semantics are as follows:

– Exclusion If both adaptations W and Z are applicable, W is activated and
Z is deactivated.

– Inclusion If adaptation W is applicable (either because the context condi-
tion a is true or because W is included by another adaptation), adaptation
Z should also be active at the same time regardless of the thruth value of
context condition b. The distinguishing feature between the inclusion de-
fined in Section 3.1 and the inclusion defined here is that the latter operates
cross-referencing.

Adaptation W Adaptation Z

ba 0...1

Fig. 7. Exclusion.

Adaptation W Adaptation Z

ba 0...1

Fig. 8. Inclusion.

The CODA diagram of Figure 6 contains an illustration of an exclusion:
Ignoring a phone call or message excludes both the redirection and answering
machine adaptation. This is represented by means of a dashed arrow from Ignore
to Redirect and Answermachine.

Conditional dependency Section 3.1 introduces the conditional dependency
as part of the basic vocabularium of CODA. We now show that this relationship
is also useful as part of the case-by-case resolution strategy. Consider for example
the situation in which the user wants to send a message (i.e. Type = Message)
while both WiFi and GPRS connection are available (i.e. Connection = WiFi
and Connection = GPRS). A possible policy in this case is to first try to send
the message via WiFi because this is the cheapest way. If this fails, the GPRS
connection can be tried instead. If this fails as well, the basic behaviour Outgoing
Communication is used to send the message via the default mobile connection.
This user policy is concretized in Figure 6 by means of a cross-referencing dotted
arrow from WiFi to GPRS.

The same policy is applied to the Redirect and Answermachine adaptations:
If the redirection of the phone call fails (e.g. secretary is not available), the caller
gets in touch with the answering machine. Priorities are added to the various
relationships that are used among the Ignore, Redirect, and Answermachine
adaptations to avoid ambiguities. For example, if Battery = Low, Location =
Meetingroom, and 11pm < Time < 8am simultaneously, only the exclusions
between Ignore-Redirect and Ignore-Answermachine are applicable.

4 Validation

4.1 Design rationale

The vocabularium of CODA is intentionally kept concise since we want it to be
accessible for various kinds of stakeholders including end users, domain experts,
application developers, etc. Special attention has been paid to the expressive-
ness of the CODA model: It tries to be as human-friendly as possible by avoid-
ing “enumeration like” descriptions and working with high-level abstractions
instead. In this way, CODA offers a high-level view on the runtime contextual
variability of a software system without burdening the stakeholders with low-
level technical details.

CODA can be used by requirement analysts as an instrument for communi-
cation with clients to grasp the problem domain. It is furthermore an important
document of reference for designers and implementors to better understand the
technical challenges. Our CODA approach has already proven its usefulness for
modelling a wide variety of context-aware scenarios going from intelligent vend-
ing machines, domotic systems, and shopping guidance systems to advanced user
interfaces.

4.2 Mapping to decision tables

Although CODA might seem as being far removed from the solution space, since
it has a well-defined syntax and semantics, it can be easily mapped to decision ta-
bles [7] which brings it very close to the computational level. For example, Tables
1 and 2 reflect the CODA diagram of Figure 6. Each decision table corresponds
to a particular variation point of the CODA diagram. In our particular example,
we distinguish Incoming Communication and Outgoing Communication.

The columns of the decision tables contain an enumeration of all possible
context situations (at the top) and the associated actions (at the bottom). The
actions represent the adaptations of CODA. Strictly speaking, we should always
include an action called “basic behaviour,” but we omit this for clarity reasons.
Furthermore, Table 2 is incomplete because the case in which Switch = Off is
not included - also for clarity reasons.

The mapping of CODA to decision tables is a lossy transformation. This is
because the high-level concepts (e.g. multiplicities, resolution strategies, etc.) of
CODA are translated to plain enumerations of yes/no-questions. Although such
a mapping is important to evolve towards the solution space, the decision tables
themselves are not useful for humans to understand the insights of the problem
domain.

In the following, we validate our CODA approach by describing in high-level
terms how it can be mapped to decision tables. The transformation algorithm
has been implemented in Java using an XML representation of CODA. To this
end, we developed an XML Schema Definition which provides concrete syntax
for CODA. Furthermore, the mapping of CODA to decision tables creates a
formal basis for the semantics of CODA.

1. Create a decision table per variation point in CODA which is the root of a
disjunct subtree.

2. Place all context conditions of the CODA diagram in the conditions column
of the decision table.

3. Generate all possible yes/no combinations of the context conditions. Redun-
dancy should be avoided.1

4. The following rules apply for the generation of actions in the decision table:
– All context-dependent adaptations which have a full arrow as parent

link (i.e. either a refinement or inclusion) correspond to a single action.
1 For example, if ¬(11pm < Time < 8am), it is not necessary to include all yes/no

combinations of the return values OK, Exception, and Overflow.

– Context-dependent adaptations with a dotted arrow as parent link (i.e.
conditional dependency) are translated to an action called “cond-dep
from-adaptation → to-adaptation”.

– It is possible that a context-dependent adaptation has both a full and
dotted arrow as parent link which implies the definition of two different
actions.

5. For each possible context description in column si of the decision table,
perform the following steps.
(a) Let n be the variation point of a particular decision table. Furthermore,

let solution set S = ∅.
(b) At choice point n, determine the set A of applicable (b, p, a) triples based

on the context description si. The variable b is the root node (i.e. vari-
ation point or context-dependent adaptation), p is the parent link type
(i.e. full or dotted arrow) and a is the applicable context-dependent
adaptation.

(c) Verify if A fulfills the multiplicity constraint. If not, the resolution strat-
egy associated with choice point n should be applied to A.

(d) Add set A to the solution set S. Recursively call step (5b) for all n = a :
(b, p, a) ∈ A.

(e) Per (b, p, a) triple of the solution set S, mark the corresponding actions. If
p = dotted, the appropriate action “cond-dep b → a” should be marked.

Table 1. Decision table for incoming communication.

Conditions s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

Battery is low N Y N N N N Y Y N N N N Y
Location is meetingroom N N Y N N N Y N Y Y Y Y Y
Time is at night N N N Y Y Y N Y Y Y Y Y Y
Answermachine returns OK Y N N Y N N
Answermachine returns Exception N Y N N Y N
Answermachine returns Overflow N N Y N N Y
Redirection succeeded (Y) or failed (N) Y N N N
Actions
Ignore × × × ×
Redirect × × × × ×
Answermachine × × × × × ×
cond-dep Answermachine → Emergency × ×
cond-dep Answermachine → OutOfMemory × ×
cond-dep Redirect → Answermachine × × ×

5 Related work

5.1 CODA versus FODA

The CODA approach is heavily inspired by the already existing Feature-Oriented
Domain Analysis used in product-line development. The FODA modelling ap-

Table 2. Decision table for outgoing communication.

Conditions s1 s2 s3 s4 s5 s6 s7 s8 s9

Switch is on Y Y Y Y Y Y Y Y Y
Connection is WiFi N N Y Y N N Y Y Y
Connection is GPRS N N N N Y Y Y Y Y
Type phone call (Y) or message (N) Y N Y N Y N Y N N
WiFi call/message fails N Y
Actions
Counter × × × × × × × × ×
Time × × × ×
Data Packages × × × × ×
WiFi × × × × ×
GPRS × ×
cond-dep WiFi → GPRS ×

proach is originally proposed by Kang et al. [8] to model a family of related
software products in a very concise manner. Although the CODA diagram looks
syntactically very close to FODA, the overall aim of CODA and the semantics
of its building blocks differ significantly. Table 3 contains a detailed comparison
between CODA and FODA based on the following characteristics:

Goal What is the intended purpose of the model?
Concept What does the model describe?
Commonalities and Variabilities Software variability in general can be char-

acterized by means of common and variable elements. What is the concrete
meaning of these elements?

Actor Who uses the model?
Mode Is the model a static or dynamic analysis?

5.2 State charts

Proposals like [9] and [10] already identified the importance of a sound formal
basis to develop robust context-aware systems. Central to their approach is the
use of state charts (or activity diagrams) to model the application domain. The
conceptual difference between CODA and state charts is the way of thinking that
is induced. Whereas in CODA one thinks in terms of (hierarchical decomposi-
tion of) basic behaviour and refinements of this behaviour at certain variation
points, statecharts are about states (e.g. denote a particular way of behaving)
and transitions between them.

Strictly speaking, all concepts of CODA can be imitated with state charts
simply because state charts are turing complete. However, the concern of CODA
is not what can be modelled, but how. In that regard, we observe that the vo-
cabularium of state charts do not include concepts like multiplicities, resolution
strategies at choice points, inclusions, and exclusions. In CODA, these concepts
are crucial for establishing a high-level view on the problem space.

Table 3. Comparison of CODA and FODA.

Characteristic FODA CODA
Full name feature-oriented domain analysis context-oriented domain analysis
Goal product-line development context-aware systems
Concept all possible product variations of a

family of related products
context-aware behavioural varia-
tions within (a subpart of) a single
system

Commonalities behaviour shared by all family
members of product

basic context-unaware behaviour
which is always applicable, but
might be refined

Variabilities feature: any prominent and distinc-
tive aspect or characteristic that is
visible to various stakeholders

context-dependent adaptation: be-
haviour refinement of some basic
behaviour that is only applicable
if a certain context condition is
satisfied

Actor software designer decides on a fea-
ture composition

the software system itself makes
autonomous decisions about the
composition of basic behaviour
and context-dependent adaptations
based on context conditions, multi-
plicities and resolution strategies

Mode static analysis: describes static
properties of features which enable
the generation of all product varia-
tions at compile time

dynamic analysis: contains context
conditions, conditional dependen-
cies and resolution strategies which
enable automatic run-time com-
putation of behavioural variations
based on context information

6 Conclusion and Future Work

Context-oriented domain analysis is an approach for identifying and modelling
context-aware software requirements, which is a niche domain within the field of
requirements analysis. It enforces modellers to think in terms of basic context-
unaware behaviour which can be further refined by means of context-dependent
adaptations at certain variation points. A context-dependent adaptation is a unit
of behaviour that adapts a subpart of a software system only if a certain context
condition is satisfied. By context, we mean every piece of information which is
computationally accessible.

This work identifies a number of relationships that may exist among context-
dependent adaptations. A context-dependent adaptation can include another
adaptation which means that the applicability of the second adaptation is veri-
fied only if the first one is activated. Next, a context-dependent adaptation can
conditionally depend on another adaptation. In this case, the applicability of
the second adaptation depends on the result of the first adaptation, yielding a
sequential execution. We finally introduce the notion of a choice point which is a
variation point or context-dependent adaptation which has multiple adaptations

associated to it. Optionally, one can associate a resolution strategy to deal with
semantically interacting adaptations.

The CODA approach can be represented in three ways: Graphically, where
the system’s basic behaviour and its context-dependent adaptations are pre-
sented in a tree structure; Textually, using XML technology to declaratively
write down CODA diagrams; and Structurally, where the semantics of CODA
elements are mapped to decision tables.

The aim of the CODA approach is to have a concise modelling language
for context-aware systems which is accessible to various kinds of stakeholders.
Since CODA has a well-defined syntax and semantics, it possesses a sound basis
for evolving towards the solution space. However, a deeper understanding of
the mapping from CODA to the computational level is still under investigation.
In this regard, we believe that the mapping of CODA to decision tables is an
important step in the right direction.

References

1. Kurt Bittner. Use Case Modeling. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

2. Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented Pro-
gramming. Submitted to Journal of Object Technology, 2007.

3. Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. In 6IWSSD: Selected Papers of the Sixth International Work-
shop on Software Specification and Design, pages 3–50, Amsterdam, The Nether-
lands, The Netherlands, 1993. Elsevier Science Publishers B. V.

4. Michael Jackson. Problem frames: analyzing and structuring software development
problems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

5. Luc Steels. Kennissystemen. Addison-Wesley, Reading, MA, USA, 1992.
6. Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling

Language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

7. R.M. Feagus. Decision tables - an application analyst/programmer’s view. Data
Processing 12, pages 85–109, 1967.

8. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, November 1990.

9. Annika Hinze, Petra Malik, and Robi Malik. Interaction design for a mobile
context-aware system using discrete event modelling. In ACSC ’06: Proceedings of
the 29th Australasian Computer Science Conference, pages 257–266, Darlinghurst,
Australia, Australia, 2006. Australian Computer Society, Inc.

10. Mark Mahoney and Tzilla Elrad. Distributing statecharts to handle pervasive
crosscutting concerns. In Building Software for Pervasive Computing Workshop at
OOPSLA ’05, San Diego, CA, October 2005.

