
Dynamically Scoped Functions as the Essence of AOP

Pascal Costanza
University of Bonn, Institute of Computer Science III

Römerstr. 164, D-53117 Bonn, Germany
costanza@web.de, http://www.pascalcostanza.de

June 17, 2003

Abstract

The aspect-oriented programming community devotes
lots of energy into the provision of complex static lan-
guage constructs to reason about eventual dynamic prop-
erties of a program. Only the focus on a strongly
dynamically-natured language construct reveals a very
simple mechanism behind the notions of AOP. This paper
shows that dynamically scoped functions, together with
a simple additive to access previous function definitions,
form the essence of aspect-oriented programming. We
present a complete executable one page implementation
of this idea.

1 Lexical vs. Dynamic Scope

A definition is said to be dynamically scoped if at any
point in time during the execution of a program, its bind-
ing is looked up in the current call stack as opposed to
the lexically apparent binding as seen in the source code
of that program. The latter case is referred to as lexical
scoping. Consider the following program in Scheme [12]:

(define factor 3.14)

(define (f x) (* factor x))

(define (g x)
(let ((factor 1.96))
(f x)))

Since in Scheme definitions are always lexically scoped,
functions f and g always return the same results for the
same arguments. The variable factor is rebound in g,
but this does not affect the behavior of f since f always
sees the lexically apparent binding of factor. Compare
this to the following similar program in Common Lisp [1]:

(defvar *factor* 3.14)

(defun f (x) (* *factor* x))

(defun g (x)
(let ((*factor* 1.96))
(f x)))

In Common Lisp, a global variable introduced by
defvar is always dynamically bound. In order to be
able to distinguish them from lexically bound variables,
they are given names that have leading and trailing as-
terisks. This is an idiom generally accepted by Common
Lisp programmers. In Common Lisp, dynamically scoped
variables are referred to as special variables [1, 18, 19].

In the program above, f yields different results from
g for the same arguments, since the new binding of
*factor* in g affects the behavior of f. Dynamically
scoped variables are always looked up in the call stack
starting from the current method frame. When g is called,
the first binding that is found for *factor* within f is
the one introduced by g; otherwise, when f is directly
called, it is the global one.

Almost all programming languages in wide use employ
lexical scoping but do not offer dynamic scoping. For
example, the following program in Java [8] is equivalent
in this respect to the Scheme version above:

public class Test {

public static double factor = 3.14;

public static double f (double x) {
return factor * x;

}

public static double g (double x) {
double factor = 1.96;
return f(x);

}
}



1.1 Origin and Uses of Dynamic Scope

Dynamic scoping was accidentally introduced in the first
implementations of Lisp back in the 1950’s. When Lisp
was implemented as an interpreter, dynamic scoping just
happened to be the most natural implementation for vari-
able lookup. Compilation of Lisp naturally led to lexical
scoping. The lack of understanding of the issues involved
was ultimately remedied by the introduction of proper
lexical scoping into the Scheme dialect of Lisp in the
1970’s [20]. A detailed discussion of the issues involved
around scoping can be found in the seminal technical re-
ports [21] and [23].

As already pointed out in those reports, dynamically
scoped variables turn out to be very useful when there is a
need to influence the behavior of parts of a program with-
out having to clutter the parameter lists of the functions
called directly and/or indirectly. For example in Com-
mon Lisp, there are several standardized special variables
that control the behavior of the standard print functions.
One example is *print-base* that specifies the radix to
use when printing numbers. So by binding *print-base*
to, say, 16 one can ensure that all numbers are printed in
hexadecimal representation, no matter where the print-
ing takes place below a certain point in the call stack.
Consider the following program fragment:

(let ((*print-base* 16))
(dotimes (i 20)
(dotimes (j 20)
(print i)
(print j))))

The i-s and j-s are all printed in hexadecimal represen-
tation although this is not made explicitly clear at each
invocation of print. It should be clear by now that this
would also be the case for arbitrarily nested function calls
inside the dotimes loops that directly or indirectly call
print.

The idiomatic use of dynamically scoped variables in
Common Lisp balances several forces:

• The naming convention for special variables ensures
that local lexically scoped variable declarations never
accidentally capture global dynamically scoped vari-
ables. In the following code fragment it is very clear
which variable is dynamically scoped and which one
is lexically scoped:

(defvar *factor* 3.14) ; dynamically scoped

(defun f (x)
(let ((factor 1.96)) ; lexically scoped
...))

• Common Lisp does not provide for lexically scoped
global variables – one can just refrain from rebind-
ing special variables. Again, local variables cannot
accidentally conflict with global variables because of
the naming convention for those global variables. In
those rare cases in which a lexically scoped global
variable is actually needed, because it is important to
be able to rebind it lexically, define-symbol-macro
can be used to emulate it. See [1, 18] for more in-
formation on define-symbol-macro; see the chapter
on continuation-passing macros in [9] for an example
that makes use of a lexically scoped global variable.

• Common Lisp provides means to declare dynamically
scoped local variables. This is only useful in rare cir-
cumstances, and fortunately the language specifica-
tion ensures that it is not possible at all to acciden-
tally introduce such variables. See [3] for an example
that makes use of dynamically scoped local variables.

2 Dynamically Scoped Functions

Dynamically scoped functions had been discussed as a
possible addition to Common Lisp during the ANSI stan-
dardization process, but an agreement was not reached.1

The following forces need to be considered in the design
of a language construct for dynamically scoped functions:

• If by default all functions were dynamically scoped,
unintentional conflicts between function names
would be unavoidable. So there needs to be a use-
ful way to discriminate between lexical and dynamic
scoping for functions.

• A naming scheme for discriminating between lexi-
cally and dynamically scoped functions like that for
special variables in Common Lisp - leading and trail-
ing asterisks - would be very unhandy, because there
are usually considerably more global function defini-
tions than global variables.

• Furthermore, it is not clear whether the decision for
lexical or for dynamic scope should really be made
alongside the (global) function definitions or some-
where else. After all, it is not yet clear what dynam-
ically scoped functions would be good for.

The goal of this paper is to provide a full-fledged
aspect-oriented language construct. In order to achieve
this, we propose the following approach for dynamically
scoped functions in Common Lisp:

• The decision for lexical or dynamic scope is to be
made alongside the local definition of a function.

1Thanks to Kent M. Pitman for this piece of information.



Common Lisp already has the flet form for defin-
ing lexically scoped local functions. We add dflet
for rebinding a global function with dynamic extent.
Consider the following program fragment:

(defun f (x) (print x))

(defun g (x) (f x))

(flet ((h (x) (g x)))
(dflet ((f (x) (print (+ 1 x))))
(h 5)))

Here, h is called within a dynamically scoped defi-
nition of f. Therefore, the subsequent indirect call
of f within g executes that definition. Hence, this
program fragment prints 6, not 5.

• A construct for dynamically scoped function defini-
tions is not enough. We also provide a way to refer
to the previous definition of a function by way of an
implicit local call-next-function definition. The
program fragment above can thus be rewritten as
follows:

(flet ((h (x) (g x)))
(dflet
((f (x) (call-next-function (+ 1 x))))
(h 5)))

The call-next-function is reminiscent of CLOS’s
call-next-method [1, 18, 19] and proceed in AspectJ
[13]. Now, dynamically scoped functions can be used to
implement the canonical example of aspect-oriented pro-
gramming:

(defun f (x) (print x))

(dflet ((f (x) (print "entering f")
(call-next-function)
(print "leaving f")))

(f 5))

The output of this program fragment is as follows:

"entering f"
5
"leaving f"

So indeed, dynamically scoped functions model the
essence of aspect-oriented programming:

• A dflet captures specific join points in the control
flow of a program, and its definitions cross-cut the
program at each invocation of the original functions.

• A dflet has dynamic extent: As soon as the control
flow enters a dflet, the new function definitions are
activated and on return, they are deactivated again.
This is opposed to the static “weaving” approach
typically employed in AOP.

• So with dflet, there is no need to add constructs
for statically reasoning about the control flow of a
program (for example, cflow and friends in AspectJ
[13]).

2.1 Notes on Implementation

Appendix A lists a complete implementation of the ideas
outlined so far in Common Lisp. Dynamic scoping for
function definitions is accomplished by reusing Common
Lisp’s special variable machinery. The body of a function
is stored in a special variable and at the same time, the
function to be called just forwards any call to the one
stored in that special variable. Consider the following
function definition:

(defun f (x) (* x x))

In principle, the implementation in Appendix A trans-
lates this into the following definitions:

(defvar *f* (lambda (x) (* x x)))

(defun f (&rest args) (apply *f* args))

In order to avoid unintentional name clashes, the sym-
bol to be used for naming the special variable (*f* in the
example above) is generated programmatically and stored
in the hash table *dynsyms* that maps function names
to such symbols (lines 1-6 in Appendix A).

Since we do not want to replace the standard defun
macro in Common Lisp, we provide our own defdynfun
(lines 12-28). Changing defun would not be advisable
because of Common Lisp’s facility to declare functions to
be inlined in compiled code. There is no standard way to
modify such inlined functions after the fact, so a dynami-
cally scoped definition would not be able to affect inlined
functions. Therefore it should be a conscientious decision
by a programmer whether a function may have dynam-
ically scoped definitions or not. Since this requirement
should not result in a too strong restriction, we also pro-
vide a way to turn a defun-ed function into a defdynfun-
ed one after the fact via redefdynfun (lines 27-28). So
the following two definitions are effectively equivalent:

a) (defdynfun f (x) (* x x))

b) (defun f (x) (* x x))
(redefdynfun f)



(let (memo)
(dflet ((fib (x) (let ((result (cdr (assoc x memo))))

(if result
(prog1 result
(format t "~& found (fib ~A) => ~A" x result))

(prog1 (setf result (call-next-function))
(format t "~& called (fib ~A) => ~A" x result)
(setf memo (acons x result memo)))))))

(loop (print ’>) (print (eval (read))))))

Table 1: A dynamically scoped redefinition of the fibonacci function that caches computations.

If a dflet attempts to define a function that is not
properly prepared, an error handler allows the program-
mer to correct this situation (lines 32-37). If redefdynfun
is applied to a function name that does not exist yet,
a function with that name is prepared for dynamically
scoped definitions nonetheless, which in turn signals an
error on invocation as its default behavior (and thus be-
haves like any other undefined function; see lines 20-24).

The dflet1 helper macro allows for the dynamically
scoped definition of exactly one function, whereas the
dflet macro allows for zero or more definitions and uses
dflet1 repeatedly.

(Common Lisp’s (reduce ... :from-end t) is better
known to the world as foldr.)

The ensure-dynsym and dflet1 macros make use
of with-gensyms as described in the chapter on clas-
sic macros in [9]. Apart from that, the source code
uses only forms as defined by ANSI Common Lisp
[1, 18]. The code has been developed and tested with
Macintosh Common Lisp 5.0 (http://www.digitool.com)
and the beta version of LispWorks for Macintosh 4.3
(http://www.lispworks.com).

2.2 An Example

Following the tradition to illustrate aspect-oriented pro-
gramming with caching of fibonacci numbers, we show
how to implement this in our approach. First we give
a function definiton for fibonacci numbers, CLOS-style,
and declare it to be overridable by dflet:

; methods for the "objects" 0 and 1
(defmethod fib ((x (eql 0))) 1)
(defmethod fib ((x (eql 1))) 1)

; a method for all other cases
(defmethod fib (x)
(+ (fib (- x 1))

(fib (- x 2))))

(redefdynfun fib)

A dynamically scoped definition of fib allows us to
cache the computations – see Table 1 above.

The technique used here is essentially the same as that
of [17]: Results are looked up in an association list. When
they are found, they are immediately returned; otherwise
the original function is called, the result is stored in the
association list and finally returned. All this is inter-
spersed with verbose output. The body of dflet is a
loop that allows interactive invocations of fib and obser-
vation of the caching behavior.

Here is a transcript of an example session:

> (fib 4)
called (fib 1) => 1
called (fib 0) => 1
called (fib 2) => 2
found (fib 1) => 1
called (fib 3) => 3
found (fib 2) => 2
called (fib 4) => 5

5

> (fib 4)
found (fib 4) => 5

5

3 Related Work

3.1 Dynamic Scope

Scheme does not provide any standard constructs for dy-
namic scoping - in [21], an implementation of dynamically
scoped variables on top of lexical scoping is presented,
and the reports that define the Scheme standard head
for minimalism and conceptual simplicity instead of com-
pleteness.

However, many Scheme dialects, for example Mz-
Scheme [6], provide dynamic scope in two ways: as the
fluid-let form, and as parameter objects. For example,



the idea presented in this paper can be implemented with
fluid-let roughly as follows:

(define (f x) (print x))

(let ((call-next-function f))
(fluid-let ((f (lambda (x)

(print "entering f")
(call-next-function x)
(print "leaving f"))))

(f 5)))

A major drawback of fluid-let is that it is explicitly
defined to save a copy of the previous value of a global
variable on the stack and establish the new binding by
side-effecting that variable. This implementation breaks
in the case of multi-threading - each thread should have
their own independent bindings for dynamically scoped
variables instead of randomly modifying shared storage.
In fact, Common Lisp implementations that incorporate
multi-threading typically treat special variables as intu-
itively expected.

This is also true for parameter objects in MzScheme: a
parameter object can be accessed as a function that either
gets or sets its current value, and it can be given a new
binding with dynamic scope in a thread-safe manner by
way of the parameterize form. However, the fact that
parameter objects can only be accessed via functions to-
gether with Scheme’s preference of macro hygiene requires
a little bit more gymnastics for an implementation of our
approach.

Recent attempts at introducing dynamically scoped
variables into C++ [10] and Haskell [16] would in princi-
ple also be suitable for our approach because they are also
implemented by passing dynamic environments to func-
tions behind the scenes, instead of modifying global state.
However, we have not yet worked out the details in either
case.

Emacs Lisp comes with a Common Lisp compatibility
package that differs from ANSI Common Lisp for example
with regard to local functions: flet is lexically scoped
in ANSI Common Lisp, but dynamically scoped in that
package [7]. This means that an implementation of our
approach would be straightforward in Emacs Lisp.

It is interesting to note that many programming lan-
guages provide dynamically scoped functions in the form
of exception handlers: a throw of an exception can be
understood as a call to the dynamically scoped excep-
tion handler associated with that exception. However,
exceptions are not especially useful for aspect-oriented
programming because throws of exceptions are too ex-
plicit.

3.2 Aspect-Oriented Programming

There have been previous aspect-oriented attempts at
providing language constructs for rebinding / amending
existing functions at runtime, similar to our approach
based on dynamically scoped functions. In [14], the se-
mantics of a superimposition language construct are de-
fined that allows for method call interception (MCI). Like
in our approach, method call interceptors can be acti-
vated and deactivated at arbitrary points in the control
flow of a program and have dynamic extent. However,
that paper defines a superimposed method to globally
replace the method’s original definition during that ex-
tent. This would have the same drawbacks as MzScheme’s
fluid-let in the presence of multi-threading, but can
probably be corrected by switching to one of the thread-
safe techniques. Approaches like Handi-Wrap [2] and As-
pectS [11] can be regarded as implementations of the se-
mantics described in [14], and they have the same draw-
backs and differences to our approach. In [15], an ap-
proach is described how to add superimposition of this
kind to any language, provided the semantics of a lan-
guage are given in a suitable style.

In [24], an aspect-oriented extension of Scheme is de-
scribed that provides both constructs for static and dy-
namic weaving (around and fluid-around). In that ap-
proach, fluid-around stores and looks up aspect activa-
tions in the call stack, and therefore is thread-safe. The
static around construct records aspects in a global en-
vironment and ensures that closures keep their respec-
tive static aspects when they escape the scope of an
around activation. The same degree of “stickiness” can
be achieved in our approach by passing around the clo-
sure stored in the symbol returned by get-dynsym (line
3 in Appendix A), instead of the function itself.

All the dynamic aspect-oriented approaches described
above can be regarded as derivations of the idea to run
programs inside a specialized “aspect-oriented” monad
[17]. However, the former approaches are embedded in
the respective base languages while the latter requires all
interceptors to be defined in the monad. The fundamen-
tal difference to our approach is that all those approaches
still provide what are essentially reflective metaprogram-
ming constructs, whereas our approach is located exclu-
sively at the base level of the programming language and
is based on the considerably simpler view that aspects are
just local redefinitions of functions with dynamic extent.

Aspect-Oriented Programming has been characterized
as a combination of quantification and obliviousness [5]
(see also [4]). Obliviousness means that aspects can de-
fine certain, typically non-functional, properties of target
code without the need for the target code to have an ex-
plicit awareness of those aspects. Dynamic scope for func-
tion definitions captures this obliviousness dimension of



AOP very well: code that uses certain functions can run
in contexts with or without varying dynamically scoped
redefinitions of those functions. The quantification di-
mension is not directly covered by dynamically scoped
functions. Quantification means that an aspect defini-
tion can be applied to more than one place at a time, and
is available for example in AspectJ by means of the point-
cut construct that can span a multitude of join points in
the target code. However in Lisp dialects, quantification
is already adequately captured as one of the many uses
of structural macros. As an illustration of this point we
give a sketch of a multidflet macro:

(defmacro multidflet ((functions &body def)
&body body)

‘(dflet ,(mapcar
(lambda (function)
‘(,function (&rest args) ,@def))

functions)
,@body))

Its effect is that the single function definiton def is
used for the dynamically scoped redefinitions of the list of
function symbols functions. The elaboration of possible
usage scenarios is left as an exercise to the reader.

4 Conclusions

This paper is a slightly extended version of a submission
accepted for the workshop on “object-oriented language
engineering for the post-Java era” at ECOOP 2003.2

Hopefully, it reveals the following points, among others:

• Programming languages that support a tendency to
focus on static properties of programs can be a hin-
drance to see the forest from the trees. The aspect-
oriented programming community devotes lots of en-
ergy into the provision of complex static means to
reason about eventual dynamic properties of a pro-
gram. Only the focus on a strongly dynamically-
natured language construct reveals that we are in
fact dealing with a very simple mechanism.

• This mechanism is that of dynamic scoping for
functions. Only the addition of a structured way
to call the previous definition of a function, via
call-next-function, is needed to turn it into a full-
fledged aspect-oriented approach.

• Appendix A gives a complete executable implemen-
tation of the ideas presented in this paper, but the
paper still respects the page limit as imposed both
by that workshop and by SIGPLAN Notices. This
is only possible because a sufficiently complete and
well-balanced language is used.

2http://prog.vub.ac.be/∼wdmeuter/PostJava/

Acknowledgements The author thanks the follow-
ing people for inspiration, comments and fruitful discus-
sions, in alphabetical order: Eli Barzilay, Tim Bradshaw,
Thomas F. Burdick, Jeff Caldwell, Paul Foley, Erann Gat,
Steven M. Haflich, Robert Hirschfeld, Kaz Kylheku, Ralf
Lämmel, Barry Margolin, Joe Marshall, Wolfgang De
Meuter, Mario S. Mommer, Pekka P. Pirinen, Kent M.
Pitman, Alexander Schmolck, Nikodemus Siivola. Spe-
cial thanks to Xanalys for allowing me to use the beta
version of LispWorks for Macintosh to perform some ad-
ditional tests.

References

[1] ANSI/INCITS X3.226-1994. American National
Standard for Information Systems - Programming
Language - Common Lisp, 1994. See [18] for an on-
line version of this document.

[2] J. Baker and W. Hsieh. Runtime Aspect Weaving
through Metaprogramming. In: AOSD 2002 - Pro-
ceedings. ACM Press, 2002.

[3] T. Bradshaw. Maintaining dynamic state, 2001.
http://www.tfeb.org/lisp/hax.html#DYNAMIC-
STATE

[4] R. Filman. What Is Aspect-Oriented Programming,
Revisited. Workshop on Advanced Separation of
Concerns, ECOOP 2001, Budapest, Hungary.

[5] R. Filman and D. Friedman. Aspect-Oriented
Programming is Quantification and Obliviousness.
Workshop on Advanced Separation of Concerns,
OOPSLA 2000, Minneapolis, USA.

[6] M. Flatt. PLT MzScheme: Language Manual, 2002.
http://download.plt-scheme.org/doc/

[7] D. Gillespie. Common Lisp Extensions. Included in
distributions of GNU Emacs and XEmacs.
http://www.gnu.org/software/emacs/emacs.html
and http://www.xemacs.org/

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha.
The Java Language Specification, Second Edition.
Addison-Wesley, 2000.

[9] P. Graham. On Lisp. Prentice-Hall, 1993.
http://www.paulgraham.com/onlisp.html

[10] D. Hanson and T. Proebsting. Dynamic Variables.
In: PLDI 2001 - Proceedings. ACM Press, 2001.

[11] R. Hirschfeld. AspectS - Aspect-Oriented Program-
ming with Squeak. In: Objects, Components, Archi-
tectures, Services, and Applications for a Networked
World. Springer LNCS 2591, 2003.



[12] R. Kelsey, W. Clinger, J. Rees (eds.). Revised5 Re-
port on the Algorithmic Language Scheme. Higher-
Order and Symbolic Computation, Vol. 11, No. 1,
September, 1998 and ACM SIGPLAN Notices, Vol.
33, No. 9, October, 1998.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, W. Griswold. An Overview of AspectJ. In:
ECOOP 2001 - Proceedings. Springer LNCS 2027,
2001.

[14] R. Lämmel. A Semantical Approach to Method Call
Interception. In: AOSD 2002 - Proceedings. ACM
Press, 2002.

[15] R. Lämmel. Adding Superimposition To a Language
Semantics. In: FOAL 2002 Proceedings: Foun-
dations of Aspect-Oriented Languages Workshop at
AOSD 2002. Technical Report, Department of Com-
puter Science, Iowa State University, 2003.

[16] J. Lewis, J. Launchbury, E. Meijer, M. Shields.
Implicit Parameters: Dynamic Scoping with Static
Types. In: POPL 2000 - Proceedings. ACM Press,
2000.

[17] W. De Meuter. Monads as a theoretical foundation
for AOP. In: International Workshop on Aspect-
Oriented Programming at ECOOP, 1997.

[18] K. Pitman (ed.). Common Lisp HyperSpec, 2001.
http://www.lispworks.com/reference/HyperSpec/

[19] G. Steele. Common Lisp the Language, 2nd Edi-
tion. Digital Press, 1990. http://www-2.cs.cmu.edu
/Groups/AI/html/cltl/cltl2.html

[20] G. Steele and R. Gabriel. The Evolution of Lisp.
In: T. Bergin, R. Gibson. History of Programming
Languages II. Addison-Wesley, 1996.

[21] G. Steele and G. Sussman. Lambda - The Ultimate
Imperative. MIT AI Lab, AI Lab Memo AIM-353,
March 1976.

[22] G. Steele and G. Sussman. The Revised Report on
Scheme - A Dialect of Lisp. MIT AI Lab, AI Lab
Memo AIM-452, January 1978.

[23] G. Steele and G. Sussmann. The Art of the Inter-
preter or, the Modularity Complex (Parts Zero, One,
and Two). MIT AI Lab, AI Lab Memo AIM-453,
May 1978.

[24] D. Tucker and S. Krishnamurthi. Pointcuts and Ad-
vice in Higher-Order Languages. In: AOSD 2003 -
Proceedings. ACM Press, 2003.



A The complete source code for dflet

1: (defvar *dynsyms* (make-hash-table :test #’equal))
2:
3: (defmacro get-dynsym (fname) ‘(gethash ,fname *dynsyms*))
4:
5: (defun make-dynsym (fname)
6: (setf (get-dynsym fname) (make-symbol (format nil "*~A*" fname))))
7:
8: (defmacro ensure-dynsym (fname default)
9: (with-gensyms (sym) ‘(let ((,sym (get-dynsym ,fname)))
10: (if ,sym ,sym ,default))))
11:
12: (defun ensure-dynfun-form (fname &rest rest)
13: (let ((dynsym (ensure-dynsym fname (make-dynsym fname))))
14: ‘(progn (setf (get-dynsym ’,fname) ’,dynsym)
15: (defparameter ,dynsym
16: ,(if rest
17: ‘(lambda ,@rest)
18: ‘(if (fboundp ’,fname)
19: (fdefinition ’,fname)
20: (lambda (&rest args)
21: (cerror "Retry applying ~A to ~A."
22: "Undefined dynamic function ~A called with arguments ~A."
23: ’,fname args)
24: (apply ’,fname args)))))
25: (defun ,fname (&rest args) (apply ,dynsym args)))))
26:
27: (defmacro defdynfun (fname args &body body)
28: (apply #’ensure-dynfun-form fname args body))
29:
30: (defmacro redefdynfun (fname) (ensure-dynfun-form fname))
31:
32: (defun get-defined-dynsym (fname)
33: (ensure-dynsym fname (progn (cerror "Make ~A a dynamic function."
34: "Function ~A is not dynamic."
35: fname)
36: (eval ‘(redefdynfun ,fname))
37: (get-dynsym fname))))
38:
39: (defmacro dflet1 ((fname (&rest args) &body funbody) &body dflbody)
40: (let ((dynsym (get-defined-dynsym fname)))
41: (with-gensyms (orgfun orgargs newargs)
42: ‘(let* ((,orgfun ,dynsym)
43: (,dynsym (lambda (&rest ,orgargs)
44: (flet ((call-next-function (&rest ,newargs)
45: (apply ,orgfun (if ,newargs ,newargs ,orgargs))))
46: (destructuring-bind ,args ,orgargs ,@funbody)))))
47: (declare (ignorable ,orgfun))
48: ,@dflbody))))
49:
50: (defmacro dflet ((&rest decls) &body body)
51: (reduce (lambda (decl result) ‘(dflet1 ,decl ,result)) decls
52: :initial-value ‘(progn ,@body) :from-end t))


