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ABSTRACT

Predicate dispatching is a generalized form of dynamic dis-
patch, which has strong limitations when arbitrary pred-
icates of the underlying base language are used. Unlike
classes, which enforce subset relationships between their sets
of instances, arbitrary predicates generally do not designate
subsets of each other, so methods whose applicability is
based on predicates cannot be ordered according to their
specificity in the general case. This paper introduces a de-
cidable but expressive alternative mechanism called filtered
dispatch that adds a simple preprocessing step before the ac-
tual method dispatch is performed and thus enables the use
of arbitrary predicates for selecting and applying methods.

Categories and Subject Descriptors

D.1 [Software]: Programming Techniques— Object-oriented
Programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

Keywords
Method dispatch, predicate dispatch, generic functions

1. INTRODUCTION

A central contribution of object-oriented programming is
ad-hoc polymorphism via dynamic method dispatch, which
enables behavioral variations based on typically one receiver
argument in object-centric languages, or potentially multi-
ple arguments in languages based on generic functions. In
object-centric languages, methods and their overriding rela-
tionships are defined along the inheritance chains of classes
or objects, but even in the case of generic functions, method
selection and combination is driven by the inheritance hier-
archies in which the received arguments are involved.

Dynamic dispatch based on generic functions was origi-
nally introduced in EL1 [28], and has subsequently found
its way into a number of other programming language, in-
cluding Common Lisp [5], Dylan [23], MultiJava [8], and
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(defmethod fac ((n number))
(* n (fac (- n 1))))

(defmethod fac ((n (eql 0)))
D)

Figure 1: Factorial as a generic function.

Fortress [1], to name a few. The common feature in these
systems is that a generic function can select and apply meth-
ods based on the classes of the received arguments, allowing
users to define new methods for new classes and thus spe-
cialize generic functions for their own purposes.

There exist several extensions and variations of this ba-
sic approach, like the inclusion of aspect-style advice and
metaobject protocols for influencing the exact semantics of
method dispatch. A common extension is to specialize meth-
ods not only on classes, but also on single objects, such that
specific objects can have their own behavior that deviates
from the general behavior of their classes. For example, in
the implementation of the factorial function in Fig. 1 imple-
mented using Common Lisp, there are two methods defined,
one on the class number computing the general case for the
factorial function, and the other on the concrete number
object 0, which simply returns 1.

Since eql is a predicate in Common Lisp for object com-
parison (similar to ==, or so, in other languages), a typical
question that arises is whether this can be generalized to
a dispatch mechanism based on other, arbitrary predicates.
Indeed, it could be envisioned that the code above could be
defined as in Fig. 2, using Common Lisp’s typep predicate
for checking whether an object is an instance of a certain
type or class.?

However, the generalization to full predicate dispatch has
its limitations because predicate implications cannot be de-
cided in general. Consider the example in Fig. 3, assuming
that primep tests for prime numbers, oddp for odd numbers
and evenp for even numbers. If we call, say, (print-num-
ber-property 2), the methods for prime and even numbers
are applicable, but we cannot determine which method is
the “most specific” one, because prime numbers are not a
subset of even numbers and vice versa. This example illus-
trates why inheritance hierarchies are so useful: Subclassing

1Like in several other dynamic object-oriented languages,
numbers are considered objects in Common Lisp.
2 . . .

In Common Lisp, predicates usually end in p, hence typep.



(defmethod fac ((n (typep ’number)))
(* n (fac (- n 1))))

(defmethod fac ((n (eql 0)))
1)

Figure 2: Factorial as if by predicate dispatch.

guarantees an unambiguous specialization relationship that
can be exploited in dynamic dispatch, due to the fact that
a class designates a set of instances that is always a subset
of the sets of instances designated by any of the class’s su-
perclasses. The inclusion of eql specializers in Common Lisp
(also called singleton specializers in Dylan or some Scheme
object systems) does not introduce any ambiguity here: Ob-
jects are just always considered more specific than their re-
spective classes, because the set of a single object is always
a subset of the set of instances designated by its class.

Nevertheless, there exist a number of systems that provide
predicate dispatch [7, 14, 19, 27]. They differ in details of
their design, but they all follow basically the same approach
for resolving ambiguities when comparing predicates: The
set of predicates that can be used for the purpose of method
dispatch is restricted to a well-chosen subset which is not
Turing complete and can thus be statically analyzed. This
leads to a viable approach, but can be limiting in some cir-
cumstances, since users cannot extend predicate dispatch
with their own arbitrary predicates in a straightforward way.
In [7, 14], tests can be added which can contain arbitrary
boolean expressions from the underlying programming lan-
guage, but they are treated as blackboxes and the overriding
relationship between two syntactically different expressions
is considered ambiguous. This is unsatisfactory because a
function like print-number-property cannot be easily im-
plemented in this case.

This paper introduces a decidable but powerful general-
ized dispatch mechanisms based on a separate filtering /
preprocessing step for arguments received by filtered generic
functions. Such filters map arguments to representatives of
equivalence classes, which are then used in place of the orig-
inal arguments for method selection and combination. The
thus invoked methods, however, can operate on the original
arguments. We discuss use cases, an integration into the
Common Lisp Object System (CLOS), some implementa-
tion details, related work, and ideas for future work.

2. TRADITIONAL DYNAMIC DISPATCH

2.1 Object-centric dispatch

In traditional object-centric systems, method invocation
is triggered by messages being sent to objects where the
objects then decide which method to execute based on an
object- or class-specific mapping from message signatures to
actual methods (aka method tables). Typically, such map-
pings are fixed for specific objects, which means that the
dynamic state of a running system cannot (easily) influence
the dispatch mechanism for a particular object anymore.

One solution is to use forwarding, which means that an
object that receives a message forwards it to another object,
based on some arbitrary criteria. A popular example for that
approach is the State pattern [15], which enables separation

(defmethod print-number-property ((n (primep)))
(print "This is a prime number."))

(defmethod print-number-property ((n (oddp)))
(print "This is an odd number."))

(defmethod print-number-property ((n (evenp)))
(print "This is an even number."))

Figure 3: Ambiguous predicate method specificity.

of method definitions according to the state of a particular
(receiver) object. For example, Fig. 4 shows a diagram for
a use of the State pattern (from [15]): An object represent-
ing a TCP connection may behave differently according to
whether the connection is in the state established, listen
or closed. Here, the state is stored as a field in the TCP
connection object and actually refers to the object that con-
tains the methods appropriate for the current state. In gen-
eral, messages can be forwarded to arbitrary objects based
on arbitrary dynamic conditions.

A drawback of message forwarding is that it introduces
object identity problems: The current self or this refer-
ence is not the original receiver of the message anymore for
which the current method is being executed. This is typ-
ically referred to as the object schizophrenia problem [22].
There are a number of suggestions to solve certain aspects
of that problem, for example by rebinding self or this to
the original receiver in delegation-based languages [18, 25],
or by grouping delegating objects in split objects and letting
them share a common object identity [4]. However, the core
problem that it is not straightforward to unambiguously re-
fer to a single object anymore remains: A programmer has
to ensure that the right object in a delegation chain is being
referred to, and even in split objects, the correct role of an
object has to be selected in the general case.

Smalltalk and CLOS, among others, provide ways to change
the class of an object, and thus its method table: Smalltalk’s
become: replaces an object ol with another 02, such that
all references to o1 will refer to 02 afterwards while keeping
the identity of o1. CLOS’s change-class directly changes
the class of an object without affecting its object identity
either. In principle, those operators can be used to imple-
ment State-like patterns. However, it is generally advised
not to use such operators: Smalltalk’s become: does not
check for compatible layouts of the objects involved, so can
actually lead to (delayed) system crashes if used incorrectly
[24]. The Common Lisp specification also explicitly advises
against the use of change-class [2]: When a method is se-
lected based on the class of a particular object, changing
the class of that object while the method is executed may
have “undefined results”, which is due to optimizations that
a Common Lisp compiler is allowed to perform. The same
holds for Smalltalk’s become: for slightly different reasons:
If an object instance is changed via become:, it is not clear
whether currently executing methods bodies see the old or
the new object [24].

Gilgul’s referent assignment operator [9] can be regarded
as a cleaned-up version of Smalltalk’s become:. Gilgul guar-
antees that object layouts are compatible and provides means
to gracefully wait for, or return early from, methods that are
executing on objects to be replaced by other objects. How-
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Figure 4: A use of the State pattern (from [15]).

(defmethod fac ((n (> 0)))
(x* n (fac (- n 1))))

(defmethod fac ((n (eql 0)))
1)

(defmethod fac ((n (< 0)))
(error "Fac not defined for negative numbers."))

Figure 5: Fixed factorial as if by predicate dispatch.

ever, while this solves the technical issues, it turns out that
typical idioms in Gilgul use forwarding between the replaced
and the original version of an object in order to enable in-
cremental adaptations of methods, which effectively means
that we get the same object schizophrenia problems again
as in forwarding and delegation.

2.2 Generic functions

Recall the factorial example from Fig. 1. It states that the
factorial function has a general case for all numbers, and a
specific base case for the number 0. However, this is not cor-
rect: The factorial function is actually not defined for neg-
ative numbers, but this case is not covered in the definition
in Fig. 1. Calling that version of factorial with a negative
number will actually iterate until the memory is filled with
large negative numbers, and then probably just crashes. It
would be good if we could define factorial similar to Fig. 5
to avoid such a problem. Alas, when generalized, this leads
exactly to the problems of predicate dispatch discussed in
the introduction to this paper. The reason is that it is not
possible to restrict method specializers to user-defined sets
of instances, and that subclassing is not enough to deal with
such a situation.

3. FILTERED DISPATCH

In this paper, we introduce a new dispatch mechanism
called filtered dispatch. Filtered dispatch is based on generic
functions and extends them with a filtering step where the
arguments received by a generic function are mapped to
other values based on user-defined mapping functions. Those
filtered values are then used to perform the actual selec-
tion and execution of applicable methods. Nevertheless, the

methods see the original objects as received by the generic
function, and not the filtered ones.

We first introduce filtered dispatch and filtered functions
using a few examples to illustrate their expressive power, and
then discuss the syntax and sematics of filtered functions in
more detail, followed by a discussion of (some) implementa-
tion aspects.

3.1 Filtered functions by example

3.1.1 Factorial

In order to be able to use filtered functions, we need to
provide filter functions that map received arguments to val-
ues that we actually want to base our dispatch on. For the
factorial function, we want to distinguish between negative
and positive numbers, and the number zero. We therefore
define a function sign that makes this distinction for us.

(defun sign (n)

(cond ((< n 0) ’neg)
((= n 0) ’zero)
((> n 0) ’pos)))

We can now define a filtered function fac and specify that
it uses that filter.

(define-filtered-function fac (n)
(:filters (:sign (function sign))))

This definition is much like CLOS’s defgeneric for “an-
nouncing” generic functions: It names a generic function
(here fac) and gives it a signature (here (n), stating that
it takes exactly one parameter n). Additionally, it defines
a filter with the name :sign and specifies that the above
defined function sign is to be used for that filter.

We can now define methods for the filtered function fac:

(defmethod fac :filter :sign ((n (eql ’pos)))
(x* n (fac (- n 1))))

(defmethod fac :filter :sign ((n (eql ’zero)))
D

(defmethod fac :filter :sign ((n (eql ’neg)))
(error "Fac not defined for negative numbers."))

We use the qualifiers :filter :sign in the method defini-
tions to indicate that we indeed want to use the :sign filter



for method selection. We then use eql specializers to en-
sure that the method definitions are applicable for the three
different cases that the sign function yields.

Methods defined on filtered functions will always see the
original arguments, not the filtered ones. Therefore, the def-
initions for fac are correct: The first method will be called
if the argument is a positive number and computes the gen-
eral case of the factorial function. The second method will
be called if the argument is 0 and returns 1. The third
method will be called if the argument is a negative number
and signals an error.

The filter function sign will be called on any argument, so
if fac is called with an argument that cannot be compared
using <, = or >, sign will signal a type error at runtime. To
prevent such errors, the filter specification can be guarded.
For example, fac can also be defined like this:

(define-filtered-function fac (n)
(:filters (:sign (when (integerp n)
(function sign)))))

In case the argument passed to fac is now not of type
integer, methods associated with the filter :sign will not
be considered for method selection and application. (Since
there are no other kinds of methods defined for this func-
tion, this means that calling a function with a non-integer
will still signal an error, now indicating that no applicable
method was found. However, this is a qualitatively different
error than the type error we get without the guard).

3.1.2  State pattern

Filtered functions can be used to dispatch methods based
on the state of an argument passed to a filtered function,
which enables expressing State-like patterns without object
identity problems. Assume the following simple CLOS class
is defined for implementing a stack.

(defclass stack ()
((contents :initform (make-array 10)
:reader stack-contents)
(index :initform O
:accessor stack-index)))

This class has two slots: the contents referencing an ar-
ray with 10 elements which can be read using the function
stack-contents, and an index into that array which can be
read and written using the accessor stack-index.

A stack has three different states: It can be empty or full,
or anywhere in between (in 'normal’ state). We can express
this as a function that recognizes the state of a stack.

(defun stack-state (stack)
(cond ((<= (stack-index stack) 0)
’empty)

((>= (stack-index stack)
(length (stack-contents stack)))
’full)

(t ’normal)))

According to the function stack-state, a stack is in state
empty if its index is less than or equal to 0, in state full if its
index is greater than or equal to the length of the contents
array, and normal otherwise.

It is now straightforward to use stack-state in a filter
named :state for the typical stack operations.

(define-filtered-function stack-push (stack value)
(:filters (:state (function stack-state))))

(define-filtered-function stack-pop (stack)
(:filters (:state (function stack-state))))

(define-filtered-function stack-emptyp (stack)
(:filters (:state (function stack-state))))

The filtered function stack-push takes a stack and a value
to be pushed to the stack as parameters, and the filtered
functions stack-pop and stack-emptyp both take a stack
as their only parameters. We can now group the behavior
of a stack according to its different states.

Normal state.

In stack-push, the new value is assigned (setf) to the
contents array of the stack, with a reference (aref) to the
current index. That index is then incremented by 1 (incf),
so that it points to the next entry in the array.

(defmethod stack-push (stack value)
(setf (aref (stack-contents stack)
(stack-index stack))
value)
(incf (stack-index stack)))

Accordingly, stack-pop first decrements that index (decf)
before it reads the array reference (aref) of the contents
array of the stack at that index.

(defmethod stack-pop (stack)
(decf (stack-index stack))
(aref (stack-contents stack)

(stack-index stack)))

In normal state, a stack is never considered empty, so stack-
emptyp can just return nil, which stands for the boolean
false value in Common Lisp.

(defmethod stack-emptyp (stack)
nil)

Empty state.

In empty state, only two operations deviate from the reg-
ular stack behavior: The function stack-pop has to signal
an error to indicate that it cannot fetch further elements
from the stack, and stack-emptyp actually has to return t
as the boolean true value.

(defmethod stack-pop
:filter :state ((stack (eql ’empty)))
(error "Stack is empty."))

(defmethod stack-emptyp
:filter :state ((stack (eql ’empty)))
t)

Full state.

In full state, only one operation deviates from the regular
stack behavior: The function stack-push has to signal an
error to indicate that it cannot take any elements anymore.

(defmethod stack-push
:filter :state ((stack (eql ’full)) value)
(error "Stack is full."))



Notice how this way of specifying the stack behavior cleanly
separates the definition of the several stack states from the
behavior for the distinct states. Further note that in the
code for the normal state, we actually have not mentioned
the filter :state as a qualifier for the method definitions,
because one can always define regular methods for filtered
functions as well, and in this particular case, it would not
make a difference for the overall semantics of the stack data
abstraction whether we had used the :state filter for the
normal state or not.

This version of a State-like idiom avoids any object iden-
tity problems: A particular stack always retains its iden-
tity, no matter what state it is in. Since the state func-
tion stack-state is automatically derived from the value
a stack’s index currently has, one does not have to worry
about managing an explicit state with explicit state switches
in the corresponding push and pop operations.

However, it is also possible to use an explicit state repre-
sentation for filtered dispatch. Assume the stack data ab-
straction is varied as follows.

(defclass stack ()
((contents :initform (make-array 10)
:reader stack-contents)
(index :initform O
:accessor stack-index)
(state :initform ’empty
:accessor stack-state)))

The class stack now has an extra slot for representing the
state of a stack, initialized to empty. We can therefore de-
fine the stack operations as follows using the reader function
for that slot. (They are actually unchanged from the above
versions!)

(define-filtered-function stack-push (stack value)
(:filters (:state (function stack-state))))

(define-filtered-function stack-pop (stack)
(:filters (:state (function stack-state))))

(define-filtered-function stack-emptyp (stack)
(:filters (:state (function stack-state))))

We additionally need to define :after methods on stack-push

and stack-pop to manage the state.

(defmethod stack-push :after (stack value)
(if (>= (stack-index stack)
(length (stack-contents stack)))
(setf (stack-state stack) ’full)
(setf (stack-state stack) ’normal)))

(defmethod stack-pop :after (stack)
(if (<= (stack-index stack) 0)
(setf (stack-state stack) ’empty)
(setf (stack-state stack) ’normal)))

3.1.3 A simple Lisp interpreter

In the following, we sketch the code for a simple Lisp in-
terpreter, implemented using filtered functions. The inter-
preter below is starkly simplified: For example, it does not
implement lexical scoping or any other advanced features
that one would expect from a modern Lisp dialect. The fo-
cus is rather on how the code for such an interpreter can be

organized using filtered functions.®

The heart of a Lisp interpreter is the function eval that
takes an s-expression as a parameter and evaluates it ac-
cording to the semantics of the Lisp dialect at hand. An
s-expression is either a symbol, denoting a variable whose
binding can be looked up in an environment; a cons cell
whose first element denotes an operator and whose remain-
ing elements denote arguments for that operator; or any
value other than a symbol or a cons cell (typically numbers,
strings and other objects) that are just evaluated to them-
selves. In the case of a cons cell, the interpretation of the
s-expression depends on the first element of the expression:
It can evaluate to a function that should be applied to the
arguments in the rest of the expression after they are eval-
uated themselves, or it can be one of the special operators
which follow special evaluation rules for their arguments,
like quote, setq, lambda, if, and so on.

We start our Lisp interpreter by defining a global vari-
able *environment* building the environment for looking
up variable bindings, which by default is an empty asso-
ciation list. (We use only one global environment to keep
the presentation of the interpreter simple.) We also define
the filtered function eval with one filter : first that is only
used when the argument to eval is a cons cell (tested with
consp) and filters out its first element.

(defvar *environment* ’())

(define-filtered-function eval (form)
(:filters (:first (when (consp form)
(function first)))))

By default, any form just evaluates to itself, unless it is a
symbol, in which case it represents a variable whose value is
looked up in the global environment.

(defmethod eval (form) form)

(defmethod eval ((form symbol))
(lookup form *environmentx))

If the form is a cons cell, we assume that it denotes a func-
tion application by default: All elements of the cons cell
are evaluated by mapping (function eval) over them with
mapcar. We then assume that the first element is a func-
tion and apply it to the other (rest) elements as arguments.

(defmethod eval ((form cons))
(let ((values (mapcar (function eval) form)))
(apply (first values) (rest values))))

In all the remaining cases we are dealing with special oper-
ators. We define the methods for handling special operators
using both the :first filter and eql specializers to compare
the thus filtered first element of a cons cell with a specific
operator symbol, here quote, setq, lambda and if.

The operator quote returns the second element of the cons
cell without evaluating it.

(defmethod eval :filter :first ((form (eql ’quote)))
(second form))

3 An alternative, more complete and correct variant of a Lisp
interpreter was actually a major motivating example that led
to our discovery of filtered functions [16].



The operator setq assumes that the second element denotes
a variable binding, and that the third element evaluates to
a value that should be assigned to that binding.

(defmethod eval :filter :first ((form (eql ’setq)))
(associate (second form)
(eval (third form))
*environmentx*))

The operator lambda creates a function and assumes that
the second element is a cons cell denoting a list of parameter
names for that function, and that all remaining elements
are forms to be evaluated in an environment extended with
new bindings for the parameter names whenever the created
function is applied to some concrete arguments.

(defmethod eval :filter :first ((form (eql ’lambda)))

(lambda (&rest values)

(let ((*environment* (extend *environmentx*
(second form)
values)))

(loop for subform in (rest (rest form))
for result = (eval subform)
finally (return result)))))

The operator if evaluates the second element, based on its
truth value either evaluates the third or the fourth element,
and returns the value resulting from the latter evaluation.

(defmethod eval :filter :first ((form (eql ’if)))
(if (eval (second form))
(eval (third form))
(eval (fourth form))))

The advantage of expressing an interpreter using filtered
functions lies in the fact that each special operator can be
defined separately from all the other ones. In contrast, typ-
ical expressions of Lisp interpreters require placing all cases
for special operators in one large cond or nested if form.
With filtered functions, it is now easy to extend an inter-
preter with new special operators without the necessity to
touch the rest of the interpreter.

For example, we can add a let form to the above inter-
preter with one filtered method by expressing it in terms
of the existing special operator lambda. The following def-
inition assumes that the second element in the form to be
evaluated contains a list of variable names paired with forms
that will evaluate to the initialization values for those vari-
ables, and that all remaining elements are forms to be eval-
uated in an environment extended with new bindings for
those properly initialized variables.

(defmethod eval :filter :first ((form (eql ’let)))
(eval ‘((lambda ,(mapcar (function first)
(second form))
,@body)
,@(mapcar (function second)
(rest (rest form))))))

3.2 Filtered functions: syntax and semantics

In the following, we describe filtered functions as they are
integrated in CLOS. They are thus based on CLOS generic
functions, and largely integrate with the syntax and seman-
tics of the latter. In fact, the essential change in semantics,
apart from filtering arguments, is in the way different appli-
cable methods are compared to determine their specificity:

Methods associated with the same filters are compared using
the standard CLOS rules, whereas methods from different
filters are compared using the order in which the respective
filter specifications appear in the define-filtered-function
form. This enables programmers to specify how predicates
are to be compared in a straightforward and intuitive way.

In the following, we first discuss the syntax and (informal)
semantics of filtered functions, followed by the syntax and
(informal) semantics of filtered methods.

3.2.1 Filtered functions

A filtered function is introduced with a define-filtered-
function form. The general syntax looks like this:

(define-filtered-function function-name parameters
[(:filters {(filter-name filter—ezpression)}™)])

A filtered function has a function-name and takes param-
eters. Any function-name and parameters which would be
valid for CLOS generic functions are also valid for filtered
functions. A filtered function can specify zero or more fil-
ters, which consist of filter-names (typically symbols) and
filter-expressions. If zero filters are specified, the :filters
option can also be omitted.*

A filter expression is a Common Lisp expression which
is evaluated in a lexical environment where the parameters
of the filtered function are bound to the actual arguments
received by the filtered function. A filter expression can have
one of the following return values:

1. A single function which is used to filter the first argu-
ment as received by the filtered function in order to
search for applicable methods.

2. A list of functions which are used to filter all required
arguments as received by the filtered function in order
to search for applicable methods. If there are fewer
filter functions than required arguments, the remaining
required arguments remain unfiltered for determining
applicable methods. If there are more filter functions
than required arguments, the excess filter functions are
not used.

3. The boolean false value nil to indicate that methods
associated with this filter should not be used.

4. The boolean true value t to indicate that methods as-
sociated with this filter should be used, but none of
the arguments need to be filtered in order to search
for applicable methods.

Case 2 and 3 are the essential cases: A filter expression must
be able to indicate whether its corresponding methods are
to be considered in method dispatch or not, and which ac-
tual filter functions to use. Case 1 and 4 are special cases
that can also be expressed by returning a list of functions
in case 2, either with just one element, or with a list con-
taining identity functions only. However, especially case 1 —
returning just one function — is a very common case due to
the fact that single dispatch is very common, and thus cases
1 and 4 are added for convienence.

4Filtered functions also support all other standard generic
functions options of CLOS, but they are not discussed here.



3.2.2 Filtered methods

A filtered method is introduced with a regular CLOS def-
method form. The general, slightly simplified syntax looks
like this:®

(defmethod function-name [qual] parameters form™)
qual = {method-qualifier}” [:filter filter-name]

A filtered method has a function-name to specify the fil-
tered function which it should be associated with, as well as
a (specialized) parameter list and a method body consisting
of one or more forms. As in CLOS, a defmethod form has
an optional list of qualifiers. The list of qualifiers can con-
sist of the usual CLOS qualifiers, like :before, :after and
:around. For filtered methods, the list of qualifiers option-
ally ends with the keyword :filter followed by the name of
a filter which this method should be associated with. If there
is no :filter keyword, the method is unfiltered. If there is
no other qualifier, the method is a (filtered or unfiltered)
primary method.

3.2.3  Filtered dispatch

When a filtered function is called with particular argu-
ments, the following three steps are performed to determine
the methods to be executed, just like in CLOS, but adapted
to filtered dispatch.

1. Selecting the Applicable Methods For each filter
specification, the filter expression is evaluated with
the (required) arguments received by the filtered func-
tion. If a filter expression returns nil, none of the
methods associated with this filter are considered ap-
plicable. Otherwise, the filter functions returned by
the filter expression are applied to the arguments re-
ceived by the filtered function, and the thus filtered
arguments are then used to determine which of the
methods associated with this filter are applicable ac-
cording to the CLOS rules (either an argument is an
instance of a class specializer, or the same as the ob-
ject referenced by an eql specializer). Unfiltered meth-
ods (methods without a :filter qualifier) are consid-
ered as potentially applicable methods as well and are
checked against the unfiltered arguments.

2. Sorting the Applicable Methods The applicable
methods from the previous step are sorted to deter-
mine their specificity as follows: First, they are ar-
ranged into groups of methods that are associated with
the same filters, with an optional additional group of
unfiltered methods that are not associated with any fil-
ter. Second, within each group, methods are sorted ac-
cording to the precedence order of the class or eql spe-
cializers following the normal CLOS rules. Finally, the
resulting lists of sorted methods are appended to each
other according to the order of the filter specifications

as they appear in the define-filtered-function form:

If a filter specification appears earlier to the left of the
list of filter specifications, it is considered less specific
than filter specifications that come afterwards to the
right of the list. Unfiltered methods are considered less
specific than all other methods in this step.

3. Combining the Applicable Methods The standard
qualifiers for method combination from CLOS deter-

5The full syntax of the CLOS defmethod form is supported.

mine the order in which the sorted applicable meth-
ods are eventually executed: First, the most specific
:around method is invoked, if any. An :around method
may invoke call-next-method to execute the respec-
tive next specific :around method, if any. If there
are no (further) :around methods, then all :before
methods are executed, with the most specific :before
method being executed first, followed by all next most
specific :before methods. Next, the most specific pri-
mary method is invoked. A primary method may in-
voke call-next-method to execute the respective next
specific primary method, if any. After return from the
primary method(s), all :after methods are executed,
with the least specific :after method being executed
first, followed by all next least specific : after methods
in order. Finally, execution returns to the remaining
code to be executed in the :around methods, if any, fol-
lowing the respective invocations of call-next-method.

The above steps follow essentially the same rules as the
corresponding rules for selection and application of methods
in CLOS,® except that method specificity for filtered meth-
ods is determined according to the user-defined order of their
corresponding filter specifications. This allows programs to
determine an ordering between predicates, alleviating the
issue of predicate dispatch that predicates cannot be auto-
matically ordered for specificity. For example, the introduc-
tory example of methods defined for prime, odd and even
numbers from Fig. 3 can now be defined as follows.

(define-filtered-function print-number-property (n)
(:filters (:prime (when (primep n) t))
(:0dd  (when (oddp n) t))
(:even (when (evenp n) t))))

(defmethod print-number-property ((n number))
(print "This is a number."))

(defmethod print-number-property
:before :filter :prime (n)
(print "This is a prime number."))

(defmethod print-number-property
:before :filter :odd (n)
(print "This is an odd number."))

(defmethod print-number-property
:before :filter :even (n)
(print "This is an even number."))

Calling (print-number-property 2) will now print “This
is an even number.”, “This is a prime number.” and “This
is a number.” in that, unambiguously defined, order. Like-
wise, (print-number-property 5) will print “This is an odd
number.”, “This is a prime number.” and “This is a number.”
in exactly that order.

3.3 Implementation details

We have implemented a first version of filtered functions
on top of the CLOS metaobject protocol (CLOS MOP, [17])
to modify the dispatch algorithm according to the rules

SThis includes exceptional situations, like invoking call-
next-method when there are no next methods, which we do
not discuss in this paper.



specified above. In addition, we have added a user-defined
method combination to handle : filter specifications in def-
method forms and corresponding standard qualifiers :before,
:after and :around. Unfortunately, the subprotocols of
the CLOS MOP that specify generic function dispatch are
the least well supported across different Common Lisp im-
plementations: Currently, the only implementation where
we have been able to successfully implement filtered func-
tions by adhering to the CLOS MOP specification is SBCL.
We have also been able to support LispWorks, but it was
necessary to use implementation-dependent features for this
purpose. In principle, arbitrary user-defined method combi-
nations can be supported in SBCL, as long as they correctly
recognize and handle the :filter qualifier. However, in
LispWorks only our own simulation of the standard method
combinaton is supported due to limitations in LispWorks’s
support for the CLOS MOP. We have tried to support other
major Common Lisp implementations, but so far have not
been successful in doing so. The fact that filtered func-
tions can be implemented in SBCL shows that the CLOS
MOP is expressive enough to support complex extensions
and should be an encouragement for other implementations
to extend their adherence to the CLOS MOP. We are nev-
ertheless currently investigating more portable implementa-
tions of filtered functions.

We have not yet payed a lot of attention to efficiency con-
cerns. However, we have taken advantage of some special
cases that are supported by the CLOS MOP specification:
When no filters are specified, or none of the specified filters
are used in actual method definitions for a given filtered
function, the default dispatch algorithm of CLOS is used
unchanged and should thus have good performance char-
acteristics. If filters are specified for a given filtered func-
tion, and exactly one filter is ever used in method defini-
tions for that filtered function,” method dispatch should be
reasonably efficient, since the only overhead incurred is the
filtering step, after which the CLOS method selection and
application algorithm of CLOS can again be used mostly un-
changed: Only an additional :around method is added by
default which “unfilters” the previously filtered arguments
such that applied methods see the original arguments as
originally received by the filtered function. Only in the case
where methods are defined for several different filters, or
in conjunction with unfiltered methods, our implementation
has to resort to a more complex dispatch algorithm cus-
tomized for filtered dispatch. We have not performed any
benchmarks yet, and we expect that there is still a lot of
room for improving the performance of our current imple-
mentation of filtered functions.

4. RELATED WORK

Classifiers in the language Kea are close to our approach:
They allow dynamic classifications of objects to classes in the
same designated group of mutually exclusive classes, based
on associated predicates [20]. Kea classifiers require more
effort than our approach since classes need to be defined to
which instances can be mapped, while our approach allows
mapping to representatives of equivalence classes, which can
be instances of any already existing class and can be dis-
patched using eql specializers. Kea is also restricted in that
it is a purely functional language without side effects, which

"This means there may not be any unfiltered methods either.

means that classifications cannot vary over time, like in our
stack example in Sect. 3.1.2.

Mode classes [26] enable dispatching on an explicit state of
an object that can be modified afer each method defined for
its class. Predicate classes [6] extend this idea by dispatch-
ing on computed states. Mode classes correspond to an ex-
plicit management of state, while predicate classes compute
state implicitly. This means that mode classes and predi-
cate classes are similar to the second and first variant of our
stack example in Sect. 3.1.2 respectively. Predicate classes
were a precursor to generalized predicate dispatch [14].

Specialization-oriented programming [21] extends generic
function dispatch with custom specializers, similar to class
and eql specializers. More specifically, it provides a new
cons specializer that can further specify what the contents
of a cons cell should specialize on. For example, the eval
method for the special operator if in our interpreter in Sect.
3.1.3 could be defined as follows in their approach.

(defmethod eval ((form (cons (eql ’if))))
(if (eval (second form))
(eval (third form))
(eval (fourth form))))

This method is specialized on cons cells whose first ele-
ment is eql to the symbol if. That approach also defines a
metaobject protocol for defining other kinds of user-defined
specializers, which relies on ordering the specificity between
different kinds of specializers explicitly. This was an impor-
tant influence on our notion of filtered dispatch, where the
order between filters is also specified explicitly, but at the
base level rather than at the metalevel. The CLOS MOP
has some restrictions which make it impossible to integrate
such specialization oriented programming into CLOS, but
[21] describes an extension of the CLOS MOP that suffi-
ciently relaxes these restrictions.

Fickle [13] provides an object migration facility (similar
to Smalltalk’s become: and Gilgul’s referent assignment)
which can be used to implement State-like idioms. How-
ever, Fickle’s static type system based on effects leads to
a situation where the reclassification of one object implies
the assumption that all instances of that object’s class are
potentially reclassified as well.

S. DISCUSSION AND FUTURE WORK

In this paper, we have introduced filtered dispatch, ex-
pressed as an extension of generic functions called filtered
functions. Filtered functions allow mapping arguments to
representatives of equivalence classes that are used in place
of the original arguments to determine applicable methods.
Methods are then sorted according to their specificity, taking
the order into account in which filter specifications are given
by the programmer. When methods are executed, they can
operate on the original, unfiltered arguments, independent
of whether they require filtering of arguments for method
dispatch or not. The fact that the order in which filter spec-
ifications are given is taken into account when sorting appli-
cable methods for specificity avoids the problems caused by
potential ambiguities when comparing arbitrary predicates
that do not designate instance subsets of each other.

Currently, filtered functions are implemented using the
CLOS MOP and can be used in two different Common Lisp
implementations. We have not considered efficiency issues



in detail yet, and have not explored more general implemen-
tation techniques. However, efficient implementation tech-
niques for generalized predicate dispatch have been investi-
gated in detail in the past [3, 7] and should be useful for
implementing filtered functions as well.

We are currently investigating how to combine filtered
functions with layered [12] and dynamically scoped functions
[10]. We are also experimenting with using filters based on
special slots [11]. Currently, our own context-oriented pro-
gramming language extensions support context-dependent
behavior on a per-class basis, but cannot restrict context-
dependent behavior to single objects in a straightforward
way. We hope that a combination of layered functions, dy-
namically scoped functions and/or special slots with filtered
functions increases the flexibility of context-oriented pro-
gramming in that regard.

In our own uses of filtered functions, we almost always
use eql specializers as soon as we define filtered methods.
This gives rise to a number of interesting research questions:
To what extent can we drop classes from an object system
and rely on filtered dispatch alone? How can we still keep
the advantages of inheritance hierarchies and facilities like
call-next-method for performing super calls then? What
is the impact on efficiency of method dispatch, which is typ-
ically achieved by grouping methods along classes? What
is the impact on understandability and maintainability of
source code, especially when different filtered functions use
different kinds of filters and different orderings for their fil-
ters? We plan to investigate these questions in more detail
in the near future.
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