
Hygiene for the Unhygienic

Hygiene-Compatible Macros in an Unhygienic Macro System

Pascal Costanza and Theo D’Hondt
(Vrije Universiteit Brussel

Pascal.Costanza@vub.ac.be and Theo.D’Hondt@vub.ac.be)

Abstract: It is known that the essential ingredients of a Lisp-style unhygienic macro
system can be expressed in terms of advanced hygienic macro systems. We show that
the reverse is also true: We present a model of a core unhygienic macro system, on top of
which a hygiene-compatible macro system can be built, without changing the internals
of the core macro system and without using a code walker. To achieve this, the internal
representation of source code as Lisp s-expressions does not need to be changed. The
major discovery is the fact that symbol macros can be used in conjunction with local
macro environments to bootstrap a hygiene-compatible macro system. We also discuss
a proof-of-concept implementation in Common Lisp and give some historical notes.

1 Introduction

Macros are local program transformations triggered explicitly in the source code
of a program. Since their introduction into Lisp in 1963 [Hart 63], they have
found their way into many Lisp dialects, since Lisp is especially attractive for
macros due to its homoiconic nature: The source code of Lisp programs is con-
structed from s-expressions, that is lists, symbols and (literal) values, which are
all core data types of Lisp itself [Kay 69, McIlroy 60]. Lisp macros can therefore
simply be expressed as functions that map s-expressions to s-expressions.

Since the initial macro systems for Lisp have operated on “raw” s-expressions,
variable names that are introduced and/or referenced in the result of a macroex-
pansion are susceptible to inadvertent capture by introductions and/or references
in the surrounding code of the macro invocation. There are essentially two kinds
of such inadvertent variable capture, and Graham introduced the terms free
symbol capture and macro argument capture to refer to them [Graham 93].

Macro argument capture is straightforward to prevent: A macro just has to
make sure that variable names it introduces are unique and cannot be inad-
vertently captured by other code. For that purpose, most Lisp dialects provide
a gensym function that generates symbols that are guaranteed to be unique:
Such symbols cannot be accidentally typed in as regular source code tokens, and
consecutive invocations of gensym are guaranteed to yield different symbols.

However, traditionally the kind of macro system sketched so far does not
provide principled solutions for the case of free symbol capture. Consider the
following code fragment:



(let ((x 42))
(macrolet (((foo) ’x))
(let ((x 4711))
(foo))))

Here, the local macro foo presumably wants to expand into a reference to the
outer x variable. However, the invocation of foo in this code fragment will even-
tually expand into a reference of the inner x, making the overall code fragment
evaluate to 4711. This is a very compact example of free symbol capture.

A number of workarounds are suggested in the literature for inadvertent
variable capture, like naming conventions, rearranging the results of macroex-
pansion, and so on. See [Graham 93] for a comprehensive overview. However,
especially the solutions for free symbol capture are ad hoc and do not generalize
well. To further complicate matters, macros with intentional variable capture
are not uncommon, and should therefore be expressible.

These issues have led to extensive research on macro hygiene especially in
the Scheme community: Hygiene-compatible macro systems provide additional
operators to help avoiding free symbol capture manually [Bawden and Rees 88,
Clinger 91a]. Hygienic macro systems, on the other hand, ensure that locally
visible bindings are automatically respected, and add means for intentionally
breaking macro hygiene [Dybvig et al. 92]. This eases expressing simple macros
compared to traditional macro systems, but complicates more involved macros,
because the latter approach differentiates between surface syntax, which is still
represented as s-expressions, and internal representation of source code in terms
of syntax objects. Effectively, the homoiconicity of traditional Lisp macros is lost
and, in some cases, code fragments have to be manually mapped between the
different representations, for example to intentionally break macro hygiene.

It has indeed been suggested that in order to support macro hygiene, the
internal representation of source code has to be changed. For example, Rees
discusses a few alternatives for implementing hygienic macro systems, which all
rely on introducing new data types for the internal representation of source code
that differ from the data types used for the surface syntax [Rees 93]. On the
other hand, Clinger claims that “if a macro needs to refer to a global variable or
function [...], then it is quite impossible to write that macro reliably using the
Common Lisp macro system” [Clinger 91b]. Since Common Lisp’s macro system
is modelled after the traditional Lisp-style approach sketched above, this seems
to suggest, in other words, that an unhygienic macro system cannot support
macro hygiene for both macro argument capture and free symbol capture.

In this paper, we make the following contributions.

– It is known that the essential ingredients of an unhygienic macro system can
be expressed in terms of advanced hygienic macro systems [Sperber et al. 07].
We show that the reverse is also true: The essential operators of hygiene-



compatible macro systems, as discussed in the literature [Clinger 91a], can
be expressed in terms of an advanced unhygienic macro system.

– We show that for this, the internal representation of source code in the
form of s-expressions does not need to be changed. The major discovery is
the fact that symbol macros can be used in conjunction with local macro
environments to bootstrap a hygiene-compatible macro system.

– We present an implementation of our approach in Common Lisp that does
not require a code walker and has a fully portable implementation.

2 An Unhygienic Macro System

In this paper, we use an effect-free subset of Scheme for developing both a core
unhygienic macro system, as well as the hygiene-compatible macro system built
on top in the next section to back our claims. We use Scheme to be able to fo-
cus on the essential elements of our approach before discussing a more complete
implementation in Common Lisp in Section 4. For most of the constructs used
in this paper, the definitions given in any of the recent Scheme reports are suffi-
cient, except for gensym, which is not part of any Scheme report, but has been
characterized in Section 1 and is provided by many Scheme implementations.

Both our unhygienic and hygiene-compatible macro systems correctly ex-
pand the arguments to set! in user programs, but themselves do not use side
effects in their expansion algorithms. We do not provide syntactic sugar for
destructuring macro arguments and constructing resulting s-expressions, since
this does not affect the core issues addressed in this paper. We do use (simple
forms of) quasiquotation in our macro systems and in example macro defini-
tions, but we consider this part of the metalanguage which is assumed to be
manually translated into invocations of list, cons and quote. An integration
of full quasiquotation is extensive but straightforward. Finally, the macro system
introduced in this section only handles local macro definitions. A generalization
to global definitions is straightforward and discussed in Section 4.

2.1 Required Elements

The macro system in this section provides the following elements which are
required to build a hygiene-compatible macro system on top in Section 3.

List macros are regular macros, as for example used in Section 1. In the liter-
ature, they are typically called just macros, but we want to explicitly distinguish
them here from symbol macros. Symbol macros are macros which define the ex-
pansion of symbol forms. They are, for example, part of ANSI Common Lisp
[ANSI 94] and R6RS Scheme (there called identifier macros [Sperber et al. 07]).



Both list and symbol macros are introduced as local macros, which are affected
by other local macros of the surrounding scope. To illustrate the latter, consider
the following hypothetical code fragment, where a local list macro foo is defined:

(let ((x 42))
(macrolet (((foo) (if (< x 50) ’(print #t) ’(print #f)))) ;; buggy
(foo)))

In lexically scoped Lisp dialects, we would expect that the macro definition
sees the variables from the surrounding code (like x). However, one important
goal of macro systems is that macros can be fully expanded at compile time,
before a program is actually executed. In other words, macro definitions cannot
see runtime bindings of local variables, so the definition of foo above is invalid.

However, things are different for macro definitions in the surrounding code:

(macrolet (((x) 42))
(macrolet (((foo) (if (< (x) 50) ’(print #t) ’(print #f)))) ;; correct
(foo)))

Since the macro x in this version is also available at compile time, foo can in-
deed see and use it. The local invocation of (foo) thus expands into (print #t).

Finally, we require low-level functions with which macros can be expanded
explicitly, like Common Lisp’s macroexpand. They are typically used for interac-
tively testing macro definitions, but they also have uses in advanced macro pro-
gramming. Due to local macro definitions, however, such low-level macroexpan-
sion functions require representations of local macro environments to be passed.

To summarize, we require the following elements:

– List and symbol macros.

– Local macros, which are affected by surrounding local macros.

– Macro expansion functions which operate on local macro environments.

2.2 A Model of Macroexpansion

In our macro system, macro environments are represented as assocation lists that
map macro names to expansion functions. A macro name is either a list with one
element, the symbol that was given as the name for a list macro, or just a symbol
that names a symbol macro. Macro expansion functions take two parameters:
the form to be expanded and a macro environment. Macros are introduced using
an expander-let form. Consider the following local macro definition fragments:

(expander-let
(((foo) (lambda (form expanders) ... 1 ...)))
(expander-let
((bar (lambda (form expanders) ... 2 ...)))
(expander-let
(((baz) (lambda (form expanders) ... 3 ...)))
... enclosed code ...)))



These definitions create the following local macro environment:

(((baz) ... function 3 ...)
(bar ... function 2 ...)
((foo) ... function 1 ...))

Macro environments list inner before outer definitions, to aid assoc finding
the innermost macro definition for a given name. Note that foo and baz are list
macros, while bar is a symbol macro. Based on this data structure, we can now
define the core macro system in Figure 1. It consists of three mutually recursive
functions expand-once, expand and expand-all, and three helper functions
bind-expander, flatten-params and remove-expanders. Each of the three
expansion functions takes a representation of a macro environment and a form
to be expanded as parameters. For convenience, these functions are curried.

The function expand-once performs one step of macro expansion, based on
the given macro enviroment, in case it successfully determines that the passed
form is indeed a macro invocation. If it is not a macro invocation, the form
is simply returned without change. The function expand repeatedly invokes
expand-once on the passed macro environment and form until the consecu-
tive forms yielded by expand-once are not changed anymore. This ensures that
in the end, the resulting form is not a macro invocation anymore, but represents
either a literal value or a core language construct. The function expand-all ini-
tially calls expand on the passed macro environment and form. It then analyzes
the form to determine whether any of the subforms of the resulting form require
further macroexpansion, in case the resulting form is a list. There are five cases:

– If the form is a quoted form, it is returned unchanged.

– If it is a sequence, conditional or assignment (begin, if, or set!), the re-
maining elements are further expanded.

– If the form is an expander-let, a new local macro environment is created
and the corresponding subforms are expanded with that new environment.

– If the form is a lambda form, the parameter list of the lambda form remains
unchanged. However, a new local macro environment is created in which all
symbol and list macro definitions are removed that have the same names as
the parameters of the lambda form. This ensures that such macro definitions
are properly shadowed by local variables. All subforms of the body of the
lambda form are then expanded in that new macro environment.

– Otherwise, the form is a function application. In that case, each element of
the list that represents the function application is further expanded.

Except for the expander-let and the lambda cases, all local macro expansions
are performed with the same environment as initially passed to expand-all.



(define expand-once
(lambda (expanders)
(lambda (form)
(let ((binding

(or (and (symbol? form) (assoc form expanders))
(and (pair? form) (assoc (list (car form)) expanders)))))

(cond (binding ((cadr binding) form expanders))
(else form))))))

(define expand
(lambda (expanders)
(letrec ((local-expand

(lambda (form)
(cond ((or (symbol? form) (pair? form))

(let ((new-form ((expand-once expanders) form)))
(cond ((eq? form new-form) form)

(else (local-expand new-form)))))
(else form)))))

local-expand)))

(define bind-expander
(lambda (expanders)
(lambda (spec)
(list (car spec) (eval ((expand-all expanders) (cadr spec)))))))

(define flatten-params
(lambda (spec)
(cond ((null? spec) ’())

((symbol? spec) (list spec))
(else (cons (car spec) (flatten-params (cdr spec)))))))

(define remove-expanders
(lambda (specs expanders)
(cond
((null? expanders) ’())
((or (and (symbol? (car expanders)) (member (car expanders) specs))

(and (pair? (car expanders)) (member (caar expanders) specs)))
(remove-expanders specs (cdr expanders)))

(else (cons (car expanders) (remove-expanders specs (cdr expanders)))))))

(define expand-all
(lambda (expanders)
(letrec
((local-expand-all
(lambda (form)
(let ((form ((expand expanders) form)))
(cond
((pair? form)
(case (car form)
((quote) form)
((begin if set!)
‘(,(car form) ,@(map local-expand-all (cdr form))))
((expander-let)
(let ((new-expanders

(map (bind-expander expanders) (cadr form))))
‘(begin ,@(map (expand-all (append new-expanders expanders))

(cddr form)))))
((lambda)
(let* ((params (flatten-params (cadr form)))

(new-expanders (remove-expanders params expanders)))
‘(lambda ,(cadr form)

,@(map (expand-all new-expanders) (cddr form)))))
(else (map local-expand-all form))))

(else form))))))
local-expand-all)))

Figure 1: The core unhygienic macro system of Section 2.



The function bind-expander is used for creating an entry in a macro envi-
ronment. It is passed an environment of the macros that are considered to be
in scope for the macro definition in question, and a specification describing that
macro definition. It is either of the form ((name) (lambda ...)) for list macros,
or (name (lambda ...)) for symbol macros. This specification is converted by
fully expanding the respective lambda form in the passed macro environment
using expand-all, and then using eval to convert it into a function. Since the
macro expansion function does not see local (runtime) variables, it is sufficient
to evaluate the lambda form in a predefined global environment.

The expander-let case in expand-all uses bind-expander for creating new
local macro environments and creates a new sequence form (with begin) that
contains the subforms from the expander-let form covered by the new macro
definitions, fully expanded in the newly created macro environment.

The function flatten-params takes a parameter list, as accepted by Scheme
lambda expressions, and turns it into a flat list of parameter names. The function
remove-expanders takes a flattened parameter list and a macro environment as
parameters and returns a new macro environment in which all occurrences of
symbol and list macro definitions having the same name as any of the names
in specs are removed. The lambda case in expand-all uses flatten-params

and remove-expanders for creating new local macro environments and creates
a new lambda form that contains the subforms from the original lambda form,
fully expanded in the modified macro environment.

3 Bootstrapping Support for Macro Hygiene

The macro system presented in the previous section is still unhygienic. To il-
lustrate the essential idea of how to build a hygiene-compatible macro system
on top, recall the example for free symbol capture from the introduction in Sec-
tion 1. We can actually solve it by simply renaming one of the variables manually
to make the code fragment evaluate to 42:

; (1) Manual renaming.
(let ((y 42))
(macrolet (((foo) ’y))
(let ((x 4711))
(foo))))

This is indeed one of the proposed workarounds for avoiding free symbol
capture in unhygienic macro systems. However, this is unsatisfactory because
we would like to be able to choose names freely everywhere in the code. What
we actually need is an operator alias that gives us a reference to a variable in
the current lexical scope that cannot be inadvertently captured:



; (2) Using aliases.
(let ((x 42))
(expander-let (((foo) (lambda _ (alias x))))
(let ((x 4711))
(foo))))

The core idea of the hygiene-compatible macro system introduced in this
section is indeed that whenever a variable is introduced by a programmer, this
actually leads to the introduction of two variables: One ‘external’ symbol macro
that has the original name chosen by the programmer, and one ‘internal’ vari-
able that has a unique name, as generated by gensym, that carries the actual
variable binding. The external symbol macro is defined such that each reference
to the original variable name in scope expands into a reference to the correct
variable. Additionally, we can introduce the desired alias operator which yields
internal names to unambiguously refer to correct variable bindings. Effectively,
our hygiene-compatible macro system works by automating the renaming shown
in code example (1). Code example (2) now expands into something like this:1

; (3) Expanded form of example (2).
(let ((#:sym01 42))
(expander-let ((x (lambda _ ’#:sym01)))
(expander-let (((foo) (lambda _ ’#:sym01)))
(let ((#:sym02 4711))
(expander-let ((x (lambda _ ’#:sym02)))
#:sym01)))))

3.1 Generating Aliases

Figure 2 shows the additional definitions that are needed on top of the unhygienic
macro system from the previous section to make that automatic renaming work.
It defines two helper functions: The function create-alias-formals takes a
parameter list as used in Scheme lambda forms and generates a congruent list,
where each occurrence of a variable name is replaced by a unique symbol gener-
ated by gensym. The function create-alias-expanders takes two such param-
eter lists, one with external variable names and one with corresponding internal
names as created by create-alias-formals, and creates binding forms suitable
for being embedded in an expander-let form. Those binding forms map exter-
nal variable names to lambda forms that ignore their parameters and simply
return the quoted internal variable names.

Using these two helper functions, we can define two new macros alias and
alambda. The alias macro yields a quoted internal name for an external name by
simply performing one step of macro expansion on its parameter. The alambda

macro expands into a lambda form where the parameter list is replaced by the
1 expander-let introductions are actually removed after they have been ‘consumed’ in
expand-all (see Figure 1). However, for clarity we have left them in in this example.



(define create-alias-formals
(lambda (spec)
(cond ((null? spec) ’())

((symbol? spec) (gensym))
(else (cons (gensym) (create-alias-formals (cdr spec)))))))

(define create-alias-expanders
(lambda (spec alias-spec)
(cond
((null? spec) ’())
((symbol? spec) (list (list spec ‘(lambda _ (quote ,alias-spec)))))
(else (cons (list (car spec) ‘(lambda _ (quote ,(car alias-spec))))

(create-alias-expanders (cdr spec) (cdr alias-spec)))))))

(expander-let
(((alias) (lambda (form expanders)

‘(quote ,((expand-once expanders) (cadr form)))))
((alambda) (lambda (form expanders)

(let* ((alias-formals (create-alias-formals (cadr form)))
(alias-expanders
(create-alias-expanders (cadr form) alias-formals)))

‘(lambda ,alias-formals
(expander-let ,alias-expanders ,@(cddr form))))))

((alet) (lambda (form expanders)
‘((alambda ,(map car (cadr form)) ,@(cddr form))
,@(map cadr (cadr form))))))

...)

Figure 2: The hygiene-compatible macro system of Section 3.

result of passing it to create-alias-formals, and the body is wrapped by
an expander-let mapping external to internal names. New hygiene-compatible
binding forms can now be expressed in terms of alambda. As an example, alet
is defined in terms of alambda in Figure 2 in the usual way.

We can now express our example by embedding the following code fragment
in these macro definitions. This version indeed evaluates to 42:

(alet ((x 42))
(expander-let (((foo) (lambda _ (alias x))))
(alet ((x 4711))
(foo))))

The required elements listed in Section 2.1 that are provided in the un-
hygienic macro system of the previous section are used to build the hygiene-
compatible macro system in this section as follows:

– Symbol macros are used to map from external to internal variable names.

– Local macros are affected by (expanded using) outer macros. This allows
defining alias as a higher-order macro, which is expanded at compile time.

– Local macro environments and low-level macro expansion functions enable
alias to look up internal variable names for the respective scopes.



The hygiene-compatible macro system presented in this section is fully lay-
ered on top of the unhygienic macro system in the previous section. Especially,
there is no need for walking the code embedded in a macro definition to en-
sure that external variable names are correctly mapped to internal ones. Con-
sequently, the hygiene-compatible macro system does not need any knowledge
about the core language that is processed by the core unhygienic macro system,
but relies on the fact that the core macro system already correctly distinguishes
core language constructs from macros. In contrast, traditional algorithms for
supporting macro hygiene have to explicitly walk code embedded in macro defi-
nitions [Rees 93]. As a consequence, they have to be aware of the core language
constructs of the underlying language, so such algorithms have to be intimately
tied to the compiler of the core language.

Furthermore, our hygiene-compatible macro system does not require any ad-
ditional data structures for representing variables and recording their syntactic
levels, as is typically done in traditional hygienic and hygiene-compatible macro
systems [Rees 93]. Instead, we exclusively use plain symbols for representing
variables, which effectively leads to a ‘flattening’ of all variables in the result of
expand-all, independent of whether a variable is introduced by the programmer
or by a macro, and independent of the stage at which a variable is introduced.

4 Integration into Common Lisp

As a proof of concept, we have implemented a full version of a hygiene-compatible
macro system in Common Lisp following the approach in Section 3.2 To achieve
this, all binding forms (defvar, defun defmacro, let, let*, flet, macrolet,
and so on) have to be reimplemented in a way similar to alambda and alet, so
that they can generate the necessary mappings from external to internal names.
The ‘internal’ names for global definitions cannot be uninterned symbols,3 so
they are symbols with the name of their respective package prepended and in-
terned in a dedicated package: As long as that package is not manipulated by user
code, it thus guarantees uniqueness for global names. To keep things manage-
able, we have not reimplemented all of Common Lisp, but restricted ourselves to
ISLISP, which is mostly a small but non-trivial subset of Common Lisp [ISO 97].

On the one hand, this implementation is feasible since Common Lisp pro-
vides all of the required elements listed in Section 2, including “list” macros and
symbol macros, local macros affected by surrounding macros, and macro ex-
pansion functions which operate on local macro environments. Although macros
are specified differently from the expander-let forms used in this paper (using
macrolet), it is still also possible to access the local macro environment as part
of the macro’s parameter list via the &environment keyword.
2 Download available at http://p-cos.net/core-lisp.html
3 to ensure they can be externalized during file compilation



On the other hand, we are faced with two additional technical challenges:
Whereas Scheme uses a single namespace for values, Common Lisp and ISLISP
provide different namespaces for variables, functions, block names, and so on.
This requires different alias operators for the different namespaces that can po-
tentially be locally rebound, that is, alias, function-alias, and block-alias.4

However, apart from minor differences, the approach for mapping external to
internal names is always essentially the same. Secondly, although providing ac-
cess to local macro environments, ANSI Common Lisp does not provide any
operators for accessing their entries. However, it provides macroexpand-1 and
macroexpand (as equivalents to expand-once and expand) that take such macro
environments as parameters. In order to provide mappings from external to in-
ternal names, we have to rebuild the macro environments as discussed in this
paper on top of these low-level mechanisms.

In spite of these technical challenges, we have been able to preserve the es-
sential characteristics of the hygiene-compatible macro system presented in this
paper. Especially, it is a mere layer on top of Common Lisp’s unhygienic macro
system, does not require a code walker and has a fully portable implementa-
tion. Additionally, Common Lisp’s package system allows the reuse of the same
names for binding forms as the original ones provided by Common Lisp, by
defining our own package, shadowing the original Common Lisp binding forms,
and reimplementing them as described above.

This esentially means that we have built our own Lisp dialect on top of
Common Lisp (HCL for Hygiene-compatible Lisp). A question that arises is
whether and how HCL can use Common Lisp libraries and vice versa. To an-
swer this question constructively, we make the following assumptions: ANSI
Common Lisp specifies that redefining or lexically rebinding symbols exported
from the COMMON-LISP package has undefined consequences (Section 11.1.2.1.2
in [ANSI 94]). We assume that Common Lisp libraries therefore indeed do not
redefine or lexically rebind such symbols, which ensures that macros specified
in ANSI Common Lisp, and therefore exported from the COMMON-LISP package,
always see the correct bindings of predefined variables and functions. We fur-
thermore assume that Common Lisp libraries do not redefine or lexically rebind
symbols from any other packages either. In other words, we assume that pro-
grammers of Common Lisp libraries have indeed used the known workarounds
and measures to protect their macros from inadvertent variable capture.

In such a case, exporting definitions from packages implemented in HCL and
importing them into Common Lisp code does not pose any problems: Symbols
from HCL will not be redefined or rebound in Common Lisp code, so they will
not be replaced with bindings without the necessary mappings from external to
internal names that are necessary for HCL’s aliasing operators to work correctly.
4 For example, classes and go tags cannot be locally rebound.



Definitions exported from Common Lisp libraries and imported into HCL
pose a more serious challenge: A HCL programmer expects to be able to use
aliasing to protect against free symbol capture, but aliasing does not work on
symbols imported from Common Lisp libraries, because they do not provide the
necessary mappings from external to internal names. The solution is that HCL
packages never import symbols from Common Lisp libraries. Instead, we have
provided operators for importing definitions from Common Lisp packages, which
define new symbols in HCL packages that map to original symbols in Common
Lisp packages. Consider the following example:
(import-variable pi common-lisp:pi)

This example expands into the following code:
(progn (define-symbol-macro pi common-lisp:pi)
...)

The omitted code contains the necessary actions to ensure that macro en-
vironments “know” that common-lisp:pi is the ‘internal’ name for pi. HCL
provides similar operators for importing functions, symbol macros and macros.

Another important case are Common Lisp macros that create new local bind-
ings for some code body. For example, Common Lisp’s defmethod macro creates
the local function call-next-method whose name is a symbol exported from the
COMMON-LISP package. To ensure that local HCL macros can alias such bindings
introduced locally by Common Lisp macros, such symbols should not be im-
ported from Common Lisp packages either. Instead, HCL provides operators
with-imported-variables, with-imported-functions, and so on, to provide
local mappings from HCL names to Common Lisp names, which are again con-
sidered ‘internal’ names for the purpose of the HCL macro system. So in the
following example, call-next-method has a corresponding local mapping:
(defmethod foo ((x integer) (y integer) (z integer))
(with-imported-functions ((call-next-method common-lisp:call-next-method))
...))

These import operators for both global and local definitions from Common
Lisp libraries cover the most important cases when interoperating between HCL
and Common Lisp. One case that is still not covered are Common Lisp macros
that compute new names for automatically generated bindings (like the various
functions generated by a defstruct macro). HCL does not provide a straight-
forward solution here. Instead, more effort is necessary in a separate library to
define wrappers for such macros that ensure that the new names are interned in
an external package, and then imported with the operators discussed above.

Another special case are keywords exported from Common Lisp’s keyword
package that are specified to evaluate to themselves: If used in HCL code, they
retain their special status and should not be redefined or rebound. HCL’s nil

is even more special in that it loses its equivalence to ’nil inside HCL code.



5 History and Related Work

Since the introduction of macros into Lisp in 1963 [Hart 63], macro systems have
been continuously improved in various Lisp dialects. Pitman gives a summary
of the then state of the art in an overview paper in 1980 [Pitman 80], shortly
before the initial specification of Common Lisp was commenced.

Based on the good experiences with lexical scoping in Scheme, one goal for
Common Lisp was to define equally powerful lexically scoped constructs, like
let, let*, flet, labels, block, and so on. One of the additions was a lexically
scoped macrolet which, to the best of this author’s knowledge, did not exist
in previous Lisp dialects. The introduction of macrolet made a representation
of local macro environments necessary, as well as a change to macroexpand to
accept such local macro environments as an additional parameter. The function
macroexpand itself already existed in previous Lisp dialects [Pitman 80].

Symbol macros, on the other hand, were introduced much later, as part of
the Common Lisp Object System: It was considered desirable to enable access
to fields in objects in a way similar to that of other object-oriented languages,
without the need to mention the (implicit) this or self reference. In order to
avoid code walkers for this purpose, symbol-macrolet was introduced in 1988
as part of the CLOS specification [Bobrow et al. 89].

Kohlbecker’s seminal work started the research on macro hygiene in 1986
[Kohlbecker et al. 86] - after the introduction of macrolet and macro environ-
ments in Common Lisp, but before symbol-macrolet. Although hygienic macro
systems were proposed for Common Lisp, they were not adopted, so research on
macro hygiene continued almost exclusively in Scheme. Housel gives an overview
of hygienic macro expansion in a series of usenet postings [Housel 93].

The algorithm in [Clinger and Rees 91] is a refinement of Kohlbecker’s work.
That algorithm performs hygienic macro expansion by way of renaming iden-
tifiers when they are newly introduced in macro definitions. This covers both
identifiers used for new local variable bindings as well as new free identifiers that
are supposed to refer to bindings in the lexical scope of the macro definition.
A low-level, hygiene-compatible macro facility is described in [Clinger 91a], and
was the basis for an implementation of the hygienic macro system described in
[Clinger and Rees 91]. The hygiene-compatible macro system presented in this
paper is very similar to the one described in [Clinger 91a]: In our system, ‘exter-
nal’ potentially ambiguous identifiers can be turned into ‘internal’ unique ones by
way of alias, whereas in their system, rename is used for more or less the same
purpose. However, in their system, the mapping from potentially ambiguous to
guaranteed unique names is not created when variable bindings are introduced
(like with alambda or derived forms in our system), but is generated by rename

after the fact as soon as macros introduce new identifiers as part of macroexpan-
sion. Macroexpanded code is further processed in a special lexical environment



that maps the renamed identifiers back to the bindings of the original identifiers
in the respective lexical environments of the macro definitions. The algorithm
described in [Clinger and Rees 91] recognizes core language constructs of the un-
derlying language in order to work correctly, and thus must be integrated with
the compiler or interpreter for that language.

The fact that symbol-macrolet did not exist at the time when research on
macro hygiene started may be a reason why the potential of using it for resolving
macro hygiene issues was not recognized. Symbol macros have been explored in
the context of Scheme much later, by Waddell in 1999 [Waddell and Dybvig 99],
there called identifier macros, and have been adopted as part of R6RS Scheme
only recently [Sperber et al. 07]. The fact that symbol macros can be used in
conjunction with local macro environments to bootstrap a hygiene-compatible
macro system is the major discovery of this paper.

6 Conclusions and Future Work

Macro argument capture and free symbol capture are sometimes compared to
the issues of dynamic scoping. In Lisp dialects where variables are dynamically
scoped by default, a new variable binding may inadvertently capture another
one with the same name that is needed by a function to be evaluated further
down the call chain. Lexical scoping is essential to ensure that closures can
close over the variables visible at their definition sites. It is probably impossible
to resolve such nameclashes otherwise without manually reimplementing lexical
scoping. This paper shows that the case for macro hygiene is a different one, by
constructing the essential ingredients of a hygiene-compatible macro system as a
mere layer on top of an advanced unhygienic one. The difference is due to the fact
that the different syntactic scopes are not needed in the fully macroexpanded
code, but that macroexpansion can ‘flatten’ all identifiers, while separate lexical
environments need to be maintained for closures at runtime.

The hygiene-compatible macro system presented in this paper works because
macros can expand into definitions of local symbol macros, and in this way con-
trol the further expansion of embedded code fragments. Macros implemented in
expansion-passing style provide a different approach for controlling such further
expansions [Dybvig et al. 88], and it would be interesting to see whether the
approach presented here can be reimplemented using expansion-passing style.

Our approach enables implementing high-level operators for inspecting and
manipulating macro environments at compile time that are similar to opera-
tors as defined in advanced hygienic and hygiene-compatible macro systems like
syntactic closures [Bawden and Rees 88], as we will discuss in a follow-up pub-
lication. It has been shown that hygienic macro systems can be implemented on
top of syntactic closures [Hanson 91], but it remains future work to show that
we can do this with our hygiene-compatible macro system as well.



References

[ANSI 94] ANSI/INCITS X3.226-1994. American National Standard for Information
Systems - Programming Language - Common Lisp, 1994.

[Bawden and Rees 88] Alan Bawden and Jonathan Rees, Syntactic Closures. Confer-
ence on Lisp and Functional Programming, July 1988, ACM Press.

[Bobrow et al. 89] Daniel Bobrow, Linda DeMichiel, Richard Gabriel, Sonya Keene,
Gregor Kiczales, and David Moon, The Common Lisp Object System Specification.
Lisp and Symbolic Computation, Vol. 1, No. 3-4, January 1989, Springer Verlag.

[Box 98] Don Box, Essential COM. Addison-Wesley, 1998.
[Clinger and Rees 91] William Clinger and Jonathan Rees, Macros That Work.

POPL’91, ACM Press.
[Clinger 91a] William Clinger, Hygienic macros through explicit renaming. Lisp Point-

ers IV(4), December 1991, ACM Press.
[Clinger 91b] William Clinger, Macros in Scheme. Lisp Pointers IV(4), December 1991.
[Dybvig et al. 88] R. Kent Dybvig, Daniel Friedman, and Christopher Haynes, Expan-

sion passing style: A general macro mechanism. Lisp and Symbolic Computation,
Vol. 1, No. 1, June 1988, Springer Verlag.

[Dybvig et al. 92] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman, Syntactic ab-
straction in Scheme. Lisp and Symbolic Computation, 5(4), 1992, Springer Verlag.

[Gosling et al. 05] James Gosling, Bill Joy, Guy Steele Jr., and Gilad Bracha, The Java
Language Specification, Third Edition. Addison-Wesley, 2005.

[Graham 93] Paul Graham, On Lisp. Prentice-Hall, 1993.
[Hanson 91] Chris Hanson, A Syntactic Closures Macro Facility. Lisp Pointers IV(4),

9-16, December 1991, ACM Press.
[Hart 63] Timothy Hart, MACRO Definitions for LISP. AI Memo 57, MIT, 1963.
[Housel 93] Peter Housel, An introduction to macro expansion algorithms, parts

1-4. http://www.cs.indiana.edu/pub/scheme-repository/doc/misc/macros-01.
txt - macros-04.txt.

[ISO 97] ISO/IEC 13816:1997. Programming Language ISLISP, 1997.
[Kay 69] Alan Kay, The Reactive Engine, PhD thesis, University of Utah, 1969.
[Kelsey et al. 98] Richard Kelsey, William Clinger, Jonathan Rees (eds.). Revised5 Re-

port on the Algorithmic Language Scheme. Higher-Order and Symbolic Computa-
tion, Vol. 11, No. 1, September, 1998.

[Kohlbecker et al. 86] Eugene Kohlbecker, Daniel Friedman, Matthias Felleisen, and
Bruce Duba, Hygienic macro expansion. Proceedings of the 1986 ACM Conference
on LISP and Functional Programming, ACM Press.

[McIlroy 60] M. Douglas McIlroy, Macro instruction extensions of compiler languages.
Communications of the ACM, Vol. 3, No. 4, April 1960.

[Pitman 80] Kent Pitman, Special Forms in Lisp. LISP Conference 1980, ACM Press.
[Rees 93] Jonathan Rees, Implementing lexically scoped macros. Lisp Pointers, 1993.
[Sperber et al. 07] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van

Straaten (eds.). Revised6 Report on the Algorithmic Language Scheme, 2007.
[Waddell and Dybvig 99] Oscar Waddell and R. Kent Dybvig, Extending the Scope of

Syntactic Abstraction. POPL’99, ACM Press.


