
Reflection for the Masses?

Charlotte Herzeel, Pascal Costanza, and Theo D’Hondt

Vrije Universiteit Brussel
{charlotte.herzeel|pascal.costanza|tjdhondt}@vub.ac.be

Abstract. A reflective programming language provides means to render
explicit what is typically abstracted away in its language constructs in
an on-demand style. In the early 1980’s, Brian Smith introduced a gen-
eral recipe for building reflective programming languages with the notion
of procedural reflection. It is an excellent framework for understanding
and comparing various metaprogramming and reflective approaches, in-
cluding macro programming, first-class environments, first-class contin-
uations, metaobject protocols, aspect-oriented programming, and so on.
Unfortunately, the existing literature of Brian Smith’s original account
of procedural reflection is hard to understand: It is based on terminology
derived from philosophy rather than computer science, and takes con-
cepts for granted that are hard to reconstruct without intimate knowl-
edge of historical Lisp dialects from the 1960’s and 1970’s. We attempt
to untangle Smith’s original account of procedural reflection and make
it accessible to a new and wider audience. On the other hand, we then
use its terminological framework to analyze other metaprogramming and
reflective approaches, especially those that came afterwards.

1 Introduction

Programming languages make programming easier because they provide an ab-
stract model of computers. For example, a Lisp or Smalltalk programmer does
not think of computers in terms of clock cycles or transistors, but in terms
of a virtual machine that understands s-expressions, and performs evaluation
and function application, or understands class hierarchies, and performs mes-
sage sending and dynamic dispatch. The implementation of the particular pro-
gramming language then addresses the actual hardware: It is the interpreter or
compiler that translates the language to the machine level.

Programming languages do not only differ in the programming models they
provide (functional, object-oriented, logic-based, multi-paradigm, and so on),
but also in fine-grained design choices and general implementation strategies.
These differences involve abstractions that are implemented as explicit language
constructs, but also “hidden” concepts that completely abstract away from cer-
tain implementation details. For example, a language may or may not abstract
away memory management through automatic garbage collection, may or may
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not support recursion, may or may not abstract away variable lookup through
lexical scoping, and so on. The implementation details of features like garbage
collection, recursion and lexical scoping are not explicitly mentioned in programs
and are thus said to be absorbed by the language [1]. Some languages absorb less
and reveal more details about the internal workings of their implementation (the
interpreter, the compiler or ultimately the hardware) than others.

We know that all computational problems can be expressed in any Turing-
complete language, but absorption has consequences with regard to the way
we think about and express solutions for computational problems. While some
kinds of absorption are generally considered to have strong advantages, it is also
obvious that some hard problems are easier to solve when one does have con-
trol over the implementation details of a language. For example, declaring weak
references tells the otherwise invisible garbage collector to treat certain objects
specially, using the cut operator instructs Prolog to skip choices while otherwise
silently backtracking, and first-class continuations enable manipulating the oth-
erwise implicit control flow in Scheme. When designing a programming language,
choosing which parts of the implementation model are or are not absorbed is
about finding the right balance between generality and conciseness [2], and it is
hard to determine what is a good balance in the general case.

A reflective programming language provides means to render explicit what
is being absorbed in an on-demand style. To support this, it is equipped with a
model of its own implementation, and with constructs for explicitly manipulating
that implementation. This allows the programmer to change the very model of
the programming language from within itself! In a way, reflection strips away
a layer of abstraction, bringing the programmer one step closer to the actual
machine. However, there is no easy escape from the initially chosen programming
model and its general implementation strategy: For example, it is hard to turn an
object-oriented language into a logic language. Rather think of the programmer
being able to change the fine-grained details. For example, one can define versions
of an object-oriented language with single or multiple inheritance, with single
or multiple dispatch, with or without specific scoping rules, and so on. In the
literature, it is said that a reflective language is an entire region in the design
space of languages rather than a single, fixed language [3].

In order to support reflective programming, the implementation of the pro-
gramming language needs to provide a reflective architecture. In the beginning
of the 1980’s, Smith et al. introduced procedural reflection, which is such a re-
flective architecture that introduces the essential concepts for building reflective
programming languages. Since the introduction of procedural reflection, many
people have used, refined and extended these concepts for building their own re-
flective programming languages. As such, understanding procedural reflection is
essential for understanding and comparing various metaprogramming and reflec-
tive approaches, including macro programming, first-class environments, first-
class continuations, metaobject protocols, aspect-oriented programming, and so
on. Unfortunately, the existing literature of Smith’s original account of proce-
dural reflection is hard to understand: It is based on terminology derived from
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Fig. 1. Smith’s theory of computation.

philosophy rather than computer science, and takes concepts known in the Lisp
community in the 1960’s and 1970’s for granted that are hard to reconstruct
without intimate knowledge of historical Lisp dialects.

In this paper, we report on our own attempt to untangle and reconstruct the
original account of procedural reflection. Our approach was to actually reim-
plement a new interpreter for 3-Lisp, using Common Lisp as a modern imple-
mentation language. In our work, we also build upon experiences and insights
that came after the introduction of procedural reflection in [1], and also add
some refinements based on our own insights. Additionally we use the concepts
introduced by procedural reflection to analyze various other metaprogramming
and reflective approaches, especially those that came after Smith’s conception
of procedural reflection.

2 Self representation for a programming language

By introducing procedural reflection, Smith introduced a general framework for
adding reflective capabilities to programming languages. In order to turn a pro-
gramming language into a reflective version, one must extend the language with
a model of the same language’s implementation. That self representation must
be causally connected to the language’s implementation: When we manipulate
the self representation, this should be translated into a manipulation of the real
implementation. What parts of the implementation are possibly relevant to in-
clude in the model can by large be derived from mapping the non-reflective
version of the programming language to Smith’s theory of computation.



2.1 A model of computation

According to Smith [1], computation can be modeled as a relational mapping
between three distinct domains: a syntactic domain, an internal representational
domain (the structural field) and the “real world”. The syntactic domain consists
of program source code. The structural field consists of all runtime entities that
make up the language implementation. In extremis, this includes the electrons
and molecules of the hardware on which the interpreter runs. However, for the
purpose of procedural reflection, the structural field typically consists of high-
level data structures for implementing the values native to the programming
language, such as numbers, characters, functions, sequences, strings, and so on.
The real world consists of natural objects and abstract concepts that program-
mers and users want to refer to in programs, but that are typically out of reach
of a computer.

Fig. 1 shows a graphical representation for computation as a mapping from
programs, to their internal representation, to their meaning in the real world.
The three labelled boxes represent each of the domains. The collection of arrows
depict the mapping. The figure is meant to represent a model for computation
rendered by a Lisp interpreter, written in C – hence the s-expressions as example
elements of the syntactic domain. The <type> notation is used to denote an
instance of a particular C type or struct. For example, the “number 5” is written
as “5.0” in the programming language. Internally, it is represented by a C value
of type float and it means, as to be expected, “number 5”.

Each mapping between two domains has a different name. Mapping a pro-
gram to its internal representation is called internalization, also typically called
parsing. The mapping from one element in the structural field to another one in
the structural field is called normalization. Normalization plays the role of eval-
uation and reduces an element in the structural field to its “simplest” form. For
example, the s-expression (+ 23 (+ 10 9)) is internalized to some structure
representing a “procedure call”. When that element is normalized, it is mapped
to 42 – or better: To the internal representation of “42”. The mapping from an in-
ternal representation to its meaning in the world is called denotation. In general,
we cannot implement an interpreter that performs denotation. This is rather
something only human beings can do. What real implementations do instead is
to mimic denotation, which is called externalization [4]. For example, Common
Lisp is built around the concept of “functions”, and Common Lisp programmers
do not want to be bothered by the internal implementation of functions as in-
stances of a C struct for closures. Thus, when a function is printed, something
like “<function:f>” is displayed. By limiting the kinds of operations available in
Common Lisp for manipulating closure values and making sure they are printed
in a way that does not reveal anything about their implementation, Common
Lisp provides programmers the illusion of “real” functions. Such absorption and
the provision of an “abstract” model of the hardware is the entire purpose of
programming languages. By adding reflection to the language, we (purposefully)
break that illusion.



2.2 Reflection

Reflection allows programmers to program as if at the level of the language’s
implementation. Smith distinguishes between two kinds of reflection. Structural
reflection is about reasoning and programming over the elements in the inter-
nal domain, i.e. about inspecting and changing the internal representation of a
program. On the other hand, procedural reflection, later also called behavioral
reflection, is concerned with reasoning about the normalization of programs.
The former allows treating programs as regular data and as such enables them
to make structural changes to programs. The latter also provides access to the
execution context of a program, which can then be manipulated to influence the
normalization behavior of a program. Adding structural and procedural reflec-
tion to a programming language requires embedding a self representation of the
language in the language, which is essentially a model of its implementation.

In relation to Smith’s model of computation, the way to add structural reflec-
tion to any programming language is by extending the language with constructs
for denoting and manipulating elements in the internal domain. The parts of the
implementation that constitute the internal domain can be identified by looking
for the structures in the implementation that implement the possible outcomes
of internalization and normalization. So in other words, we should extend the
language with means to denote the internal representation of numbers, charac-
ters, procedures, and so forth. Adding behavioral reflection requires providing
means to influence the normalization process, e.g. by making it possible to call
the interpreter or compiler from within the language.

3 Embedding a model of Lisp in Lisp

One of the most difficult things about reflection to deal with is the fact that
it “messes up” the way programmers think. It does so because reflection strips
away the abstract model offered by the programming language. When using
reflection, the programmer is thinking in terms of the language’s implementation,
and no longer in terms of the programming model behind the language. In a way,
learning about reflection is similarly shocking as it was finding out that Santa
Claus isn’t real, but that it is your parents who give you your presents. When you
first found out about this, you were very upset and you resented your parents for
putting up a charade like that. After a while, though, you came to realize that it
was actually nice of them to introduce you to the illusion of a Santa Claus, and
that it is in fact still nice. Once you know your parents are the ones giving the
presents, you can even influence them to make sure you get the gifts you really
want. Similarly, reflection allows you to influence the language implementation
to make sure you get the programming language you really want.

In what follows, we illustrate how to turn Lisp into a reflective variant. To be
more precise, we turn the “prototypical” Lisp or “ProtoLisp” into its reflective
variant. Here, ProtoLisp is what we like to call the subset of Lisp presented in
textbooks to learn about implementation strategies for Lisp [5].



3.1 The world in terms of ProtoLisp (externalization in ProtoLisp)

The ProtoLisp programmer thinks in terms of s-expressions, evaluation and pro-
cedure application. An s-expression constitutes a program to be evaluated by
the computer. The syntax of s-expressions is parenthesized prefix notation: S-
expressions look like lists of symbols. The first symbol designates an operator
or procedure, while the rest designates the operands or arguments. For example,
the s-expression (+ 1 2) has an equivalent mathematical notation 1 + 2 and
evaluates to 3. An important procedure in ProtoLisp is lambda, which can be
used to create new procedures.1 It takes two arguments: a list, representing the
procedure’s arguments, and a body, an s-expression. For example, (lambda (x)
(+ 1 x)) creates a procedure that takes one argument x and adds 1 to it.

There are more kinds of objects we can talk about in ProtoLisp. The cate-
gories of the kinds of such objects are the programming language’s types. Pro-
toLisp’s types include numbers, truth values, characters, procedures, sequences,
symbols and pairs (a pair denotes a procedure call).2 The procedure type can
be used to get hold of the type of a particular object.

In reality, the interpreter does not know about “numbers” or “procedures” or
any of those other types. The programmer only thinks that what the interpreter
shows him is a number or a procedure, though in reality, it shows him something
completely different, like instances of classes implementing closures, arrays of
characters representing strings, and other bits and bytes. We only choose to
treat them as numbers and procedures and characters and so on. A language’s
types, the built-in operators, the way objects are printed, is what implements
externalization. Reflection provides a look at the actual implementation of those
objects. To know what exactly constitutes the implementation of such objects,
we have to delve into the implementation of the ProtoLisp interpreter.

1 In ProtoLisp, we call lambda a procedure because we do not distinguish between
procedures and special forms, as is traditionally done in Lisp dialects.

2 In this paper, we use the term type in the tradition of dynamically typed languages,
where values are tagged with runtime type information. Various Lisp dialects differ
in the diversity of the types they provide.



(defun read-normalize-print ()
(normalize (prompt&read) *global* (lambda (result!)

(prompt&reply result!)
(read-normalize-print))))

(defun prompt&read ()
(print ">")
(internalize (read)))

Fig. 2. The ProtoLisp read-eval-print loop or repl.

3.2 Internalization in ProtoLisp

ProtoLisp is an interactive language, implemented in this paper in Common
Lisp using the Common Lisp Object System (CLOS). It consists of an endless
read-evaluate-print-loop (repl), which repeatedly asks the programmer to type
in an s-expression, performs evaluation of the s-expression and prints the re-
sult of the evaluation. The code for this is depicted in Fig. 2. In the code, we
use the terminology by Smith: so normalize and internalize instead of the more
traditional terms evaluate and parse. Note that the interpreter is implemented
in continuation-passing style, meaning the control-flow is implemented by ex-
plicitly passing around “continuations”. Continuations are implemented here as
functions that take one argument. The third argument passed to normalize
is a function that encodes the continuation of what needs to happen after an
s-expression is evaluated, namely printing the result and starting the loop again.

A program is initially just a string of characters. The ProtoLisp interpreter
needs to parse a program string to something structured before it can be manipu-
lated for evaluation. This structure is what comes out of the call to prompt&read
in Fig. 2 (the first argument to normalize), which calls internalize to create
that structure. From now on we refer to instances of those classes as internal
structures. Depending on what the program looks like, a different internal struc-
ture is created. For example, if what is read is a digit, then an instance of the
class numeral is created, if what is read is something that starts with a left-
brace ( and closes with a right brace ), then an instance of the class pair is
created, and so on. In ProtoLisp, there is a syntax specific for each of the lan-
guage’s types. The internalize function dispatches on that syntax and creates
instances of the appropriate classes.
Fig. 3 aligns all of the ProtoLisp types (third table) with examples showing
their notation (first table). The second table lists the CLOS classes to which
those notations internalize. Note that there is no specific syntax for denoting
procedures. They are created by lambda, as discussed in the previous section.

3.3 Normalization in ProtoLisp

The normalize function depicted in Fig. 4 is the heart of the ProtoLisp inter-
preter. It implements how to simplify an s-expression to its normal form, which
is something that is self-evaluating, like a number. The normalize function takes
three arguments, namely an s-expression, an environment and a continuation:



Internalization Denotation

 handle
 pair
 atom
 rail
 closure
 boolean
 numeral

 internal structure
 procedure call
 variable
 sequence
 procedure
 truth value
 number

 '5
 (print . 1)
 x
 [1 2 3]
 n/a
 $T, $F
 0, 1, 2, 3, ...

notation CLOS class ProtoLisp type

Fig. 3. Mapping notations to internal structures

– The s-expression is the ProtoLisp program to be evaluated. It is an instance
of any of the classes listed in the second table of Fig. 3.

– The environment parameter is needed to keep track of the scope in which
normalize is evaluating an s-expression. Environments are instances of the
class Environment and map variables to bindings. There are two functions
defined for environments: binding takes an environment and an atom, and
returns the object bound to the atom in the given environment. bind takes an
environment, an atom and an internal structure, and creates a binding in the
environment, mapping the atom to the internal structure. The normalize
function is initially called with a global environment, which is bound to the
variable *global* and provides bindings for all primitive procedures defined
in the language (like +).

– Since the interpreter is written in continuation-passing style, the control-
flow is explicitly managed by passing around continuations. Continuations
are implemented as Common Lisp functions that take one argument, which
must be an internal structure. As an example of a continuation, consider the
lambda form in the source code of the read-normalize-print function in
Fig. 2, which takes one argument result!, prints it on the screen and calls
itself. This function is the continuation for the call to normalize in Fig. 2,
which means that the function is called by the normalize function instead
of returning to the caller.3

The normalize function distinguishes between four cases, the branches of
the conditional form cond in Fig. 4. Depending on the type of the s-expression
being normalized, a different evaluation strategy is taken.

An s-expression in normal form (normal-p) is self-evaluating. This implies
that when normalizing it, it can simply be returned. This is shown in line 2
of Fig. 4, where the continuation of normalize is called with an s-expression
in normal form. Examples of self-evaluating s-expressions are instances of the
classes numeral and closure, which implement numbers and functions.
3 We assume that our implementation language Common Lisp supports tail recursion.

Smith shows that this is ultimately not necessary, since all recursive calls are in tail
position in the final 3-Lisp interpreter, resulting in a simple state machine [4].



;structure = numeral | boolean | closure | rail | atom | pair | handle

;normalize: structure, environment, function -> structure

01. (defun normalize (exp env cont)
02. (cond ((normal-p exp) (funcall cont exp))
03. ((atom-p exp)
04. (funcall cont (binding exp env)))
05. ((rail-p exp)
06. (normalize-rail exp env cont))
07. ((pair-p exp)
08. (reduce (pcar exp) (pcdr exp) env cont))))

;normalize-rail: rail, environment, function -> rail

11. (defun normalize-rail (rail env cont)
12. (if (empty-p rail)
13. (funcall cont (rcons))
14. (normalize (first rail)
15. env
16. (lambda (first!)
17. (normalize-rail (rest rail)
18. env
19. (lambda (rest!)
20. (funcall cont (prep first! rest!))))))))

;reduce: atom, rail, environment, function -> structure

21. (defun reduce (proc args env cont)
22. (normalize proc env
23. (lambda (proc!)
24. (if (lambda-p proc!)
25. (reduce-lambda args env cont)
26. (normalize args env
27. (lambda (args!)
28. (if (primitive-p proc!)
29. (funcall cont (wrap (apply (unwrap proc!) (unwrap args!))))
30. (normalize (body proc!)
31. (bind-all (pattern proc!)
32. args! (environment proc!))
33. cont))))))))

;reduce-lambda: rail, environment, function -> closure

41. (defun reduce-lambda (args env cont)
42. (let ((argument-pattern (first args))
43. (body (second args)))
44. (funcall cont
45. (make-closure
46. :body body
47. :argument-pattern (make-rail :contents (unwrap argument-pattern))
48. :lexical-environment env))))

Fig. 4. The continuation-passing-style interpreter for ProtoLisp.



An atom, which denotes a variable (atom-p), is normalized by looking up its
binding in the environment with which normalize is called, and returning this
binding. Line 4 in Fig. 4 shows this: It displays a call to the continuation with
the result of a call to binding as an argument. The latter searches the binding
for the atom exp in the environment env.

A rail (rail-p) is normalized by normalizing all of its elements. Fig. 4 dis-
plays the source code for normalize-rail, which does this. It shows that a new
rail is constructed out of the normalized elements of the original rail. empty-p
is a function that checks whether a given rail has zero elements. rcons creates
a new rail as an instance of the class rail. first and rest return the first ele-
ment and all the other elements in a rail respectively. prep prepends an internal
structure to a rail. So, for example, when one types [1 (+ 1 1) 3] in the repl,
then [1 2 3] is displayed in return as the result of normalization.

A pair, denoting a procedure call (pair-p), is normalized by calling reduce4,
whose source code is also shown in Fig. 4. It is passed as arguments – besides the
environment and the continuation of the call to normalize – the name of the
procedure being called and the procedure call’s argument list. They are obtained
by calling the functions pcar and pcdr on the pair respectively (see line 8).

The source code of the reduce function, which is of course also written
in continuation-passing style, is listed in Fig. 4 as well. Through a call to
normalize, it looks up the binding for the procedure call’s name proc (an atom).
The continuation of that normalize call implements the rest of the reduce logic.
It gets called with an instance of the class closure, which implements proce-
dures (see below). If the latter closure represents the lambda procedure, checked
on line 24 using the predicate lambda-p, then reduce-lambda is called, other-
wise the rail of arguments is normalized, and depending on whether the closure
represents a primitive procedure or not, reduce proceeds appropriately.

In case the procedure being called is a primitive procedure, as checked with
primitive-p on line 28 in Fig. 4, a procedure call is interpreted by deferring it
to the Common Lisp implementation. Using unwrap, the closure object bound
to proc! is translated to a Common Lisp function that implements the same
functionality. This function is called with the arguments of the procedure call
(bound to args) after mapping them to matching Common Lisp values. The
result of this call is returned after turning it into an equivalent internal structure
again by means of wrap, since the ProtoLisp interpreter is defined only for such
structures. The details of wrap and unwrap are discussed in a following section.

Finally, when the procedure being called is user-defined, reduce proceeds by
normalizing the procedure’s body with respect to the procedure’s environment,
extended with bindings for the procedure’s variables (see lines 30–32).

reduce-lambda, also listed in Fig. 4, takes as arguments the rail of arguments
of the lambda procedure call being normalized, an environment and a continua-
tion. It creates an instance of the class closure (see make-closure on line 45),
where the slots body, argument-pattern and lexical-environment are bound
to a body, a rail of variables and the environment passed to reduce-lambda re-

4 reduce is traditionally called apply.



spectively. The body is what is obtained by selecting the second element in args,
while the argument pattern is obtained by selecting the first element from args.
For example, when reducing the procedure call denoted by (lambda (x) (+ x
1)), then upon calling reduce-lambda, args will be bound to the rail denoted
by [(x) (+ x 1)], body will be bound to the rail denoted by [(+ x 1)] and
argument-pattern to [x].

3.4 Structural Reflection in ProtoLisp

Knowing the implementation of ProtoLisp, we are able to extend the language
with reflection. With reflection we should be able to program at the level of the
ProtoLisp implementation by writing ProtoLisp programs. To this end, the Pro-
toLisp language needs to be extended in such a way that it provides the illusion
as if the implementation were written in ProtoLisp itself (and not in Common
Lisp). In this section, we discuss how to extend ProtoLisp with structural re-
flection, while the next section discusses adding procedural reflection. ProtoLisp
extended with structural reflection is dubbed 2-Lisp by Smith.

Adding structural reflection requires two extensions: Firstly, we need to ex-
tend the ProtoLisp language with the ADTs that make up the ProtoLisp imple-
mentation. Secondly, we also need a way to get hold of the internal structure of
a ProtoLisp value. The ProtoLisp implementation consists of a number of CLOS
classes implementing the ProtoLisp types, and Common Lisp functions to ma-
nipulate instances of these classes. The classes are listed in the second table of
Fig. 3 and the various functions, such as normalize, reduce, pcar, binding
and so on, are discussed in the previous section. For example, the CLOS class
pair and the functions pair-p, pcar and pcdr implement an ADT for repre-
senting procedure calls that needs to be added to the ProtoLisp language as a
corresponding ProtoLisp type and corresponding ProtoLisp procedures.

Similarly to adding a pair type and procedures that work for pairs, we extend
ProtoLisp with types and procedures that mirror the CLOS classes implementing
the rest of the ProtoLisp types, like numbers, characters, procedures and so on.
Some of the implementation functions we need to port to ProtoLisp require
types of arguments the ProtoLisp programmer normally does not deal with. The
normalize function, for example, takes an environment parameter. We need to
add types and procedures to ProtoLisp for these classes as well.5

We also add ’ to ProtoLisp, which is syntax for denoting the internal struc-
ture of an s-expression that is created when the s-expression is internalized.6 For
example, ’(+ 1 1) denotes the instance of the class pair that is obtained when
internalizing (+ 1 1). The result can be used as a pair: For example, (pcar ’(+
1 1)) returns ’+ and (pcdr ’(+ 1 1)) returns ’[1 1].

’ allows getting hold only of internal structures of values with corresponding
syntax. So for example, ’ does not allow accessing the internal structure of a
5 A complete listing of these procedures is beyond the scope of this paper. The inter-

ested reader is referred to the original 3-Lisp reference manual [4].
6 ’ is called “handle”, in contrast to Common Lisp’s and Scheme’s “quote”, also

abbreviated as ’.



procedure, because a procedure cannot be created via internalization alone (see
Fig. 3). We add the procedure up to ProtoLisp that normalizes its argument
and then returns its internal structure. Thus typing in (up (lambda (x) (+ 1
x))) will return a closure. The down procedure is added to ProtoLisp to turn an
internal structure obtained via ’ or up into a ProtoLisp value. E.g. (down ’3)
returns the “number” 3.

We can now, for example, define a procedure that prints a pair in infix no-
tation. The definition is shown in the following session with the repl:
> (set print-infix (lambda (structure)

(if (pair-p structure)
(begin

(print "(")
(print-infix (1st (pcdr structure)))
(print (pcar structure))
(for-each print-infix (rest (pcdr structure)))
(print ")"))

(print (down structure)))))
<procedure:print-infix >
> (print-infix ’(+ 1 1))
(1 + 1)

The print-infix procedure checks whether its argument is a pair. If it is a pair,
the first argument to the procedure call is printed, followed by the procedure’s
name and the rest of the arguments. Otherwise, it is just printed.

Apart from inspecting internal structures, we can also modify them. For
example, the following code shows how to add simple before advice to closures.
> (set advise-before

(lambda (closure advice)
(set-body closure (pcons ’begin (rcons advice (body closure))))))

> (set foo (lambda (x) (+ x x)))
> (foo 5)
10
> (advise-before (up foo) ’(print "foo called"))
> (foo 5)
foo called
10

The advise-before procedure changes the body of a closure to a sequence that
first executes a piece of advice and then the original closure body.

3.5 Procedural Reflection in ProtoLisp

As a final extension we add procedural reflection to ProtoLisp. This extension
is dubbed 3-Lisp by Smith. The goal of procedural reflection is to allow the
programmer to influence the normalization process. To this end, ProtoLisp is
extended with reflective lambdas to access a program’s execution context, that
is the interpreter’s temporary state, which consists of the expression, the environ-
ment and the continuation at a particular normalization step. A reflective lambda
looks like a regular procedure, with the exception that the length of its argument
list is fixed: (lambda-reflect (exp env cont) (cont (down (1st exp)))).
A reflective lambda has three parameters. When a reflective lambda call is re-
solved, they are bound to the expression, the environment and the continuation
at that normalization step.



As a first example, consider implementing a when construct. This construct
is similar to if, but when has only one consequential branch. The code below
shows how to implement it in 3-Lisp.

(set when (lambda-reflect (exp env cont)
(normalize (cons ’if (up [ (down (1st exp))

(down (2nd exp))
$F ]))

env cont)))

when is defined as a reflective lambda. When the interpreter normalizes a pair
with when as procedure name, it transforms the pair into an if pair and nor-
malizes that one instead. The body of the when construct consists of a call to
normalize. The first argument is the if pair that is constructed out of the
when pair, the second and the third argument are just the same environment
and continuation for normalizing the when pair. For example, the following two
expressions are equivalent:

(when (= (mod nr 1000) 0)
(print "Congratulations! You win a prize."))

(if (= (mod nr 1000) 0)
(print "Congratulations! You win a prize.")
$F)

As a second example, consider one wishes to implement a search procedure.
It takes as arguments a test and a list of elements, and returns the first occurrence
in the list that satisfies the test. For example:

>(search number-p [ ’licensed 2 ’kill ])
2

A procedure like search can easily be implemented, but consider that in doing
so, we want to reuse the library procedure for-each, which applies a given
procedure to each element in a given list:

(set for-each (lambda (f lis)
(when (not (empty lis))

(begin (f (1st lis)) (for-each f (rest lis))))))

The code below shows an implementation of search in terms of for-each. The
trick is to implement search as a reflective lambda: We call for-each with the
test passed to search, and when this test succeeds, it calls the continuation
cont. This is the continuation of normalizing the search pair: As such, we jump
out of the for-each loop as soon as an element satisfying the test is found.

(set search (lambda-reflect (exp env cont)
(normalize (2nd exp) env

(lambda (list!)
(for-each (lambda (el)

(when ((down (binding (1st exp) env)) el)
(cont el)))

(down list!))))))



(defclass pair (handle) ...)
(defun pcar (p) ...)
(defun pcdr (p) ...)

(defvar *global* (make-environment))

(bind *global* (make-atom :name (quote pcar))
(make-closure :ctype *primitive-tag*

:body (function pcar)
:lexical-environment *global*))

Fig. 5. Extending ProtoLisp with procedures mirroring the implementation functions.

3.6 Implementing reflection

Meta types & procedures Adding reflection to ProtoLisp requires extending
the language with types and procedures that mirror the ADTs making up its
implementation. In our implementation of ProtoLisp, the latter ADTs are imple-
mented using CLOS classes and functions. For the better part, porting them to
ProtoLisp is a matter of extending the language with new primitive procedures
and types that simply wrap the corresponding CLOS classes and functions.

For example, in Fig. 5 we list definition skeletons of the class pair and
its functions pcar and pcdr. The code also shows how we extend ProtoLisp’s
global environment with a definition for the ProtoLisp procedure pcar. The
latter definition is implemented as a closure tagged “primitive”, with a reference
to the Common Lisp function pcar as its body. So when the procedure pcar is
called in ProtoLisp, the interpreter recognizes it as a “primitive” closure object,
defers the call to the Common Lisp implementation, and ultimately calls the
Common Lisp function stored in the closure object.

Wrapping & unwrapping Recall line 29 of the reduce function in Fig. 4,
which handles calls to primitive procedures: A Common Lisp function is fetched
from the primitive closure object and then called with the provided arguments.
However, it is necessary that these arguments are first mapped onto “equivalent”
Common Lisp values by means of unwrap. For example, given an instance of the
class numeral, unwrap returns the equivalent Common Lisp number.

When there is a one-to-one mapping between simple Common Lisp and Pro-
toLisp values, like between ProtoLisp numbers and Common Lisp numbers, the
implementation of unwrap is straightforward. Unwrapping a closure which is
tagged “primitive” is also straightforward: In this case, unwrap simply returns
the Common Lisp function stored as the closure’s body. Unwrapping other clo-
sures is more complicated, because their bodies contain ProtoLisp source code
that Common Lisp functions cannot directly deal with, so they need to be han-
dled specially when Common Lisp code wants to call them directly. Therefore,
such closures are unwrapped by creating a special function object, which stores
a reference to the original closure and a Common Lisp function handling it (see
Fig. 6). Common Lisp code that wants to call such function objects needs to



(defmethod unwrap ((closure closure))
(cond ((primitive-p closure) (body closure))

((reflective-p closure)
(make-function :closure closure

:lambda (lambda (&rest args)
(error "Cannot call reflective closure from CL."))))

(t
(make-function :closure closure

:lambda (lambda (args)
(reduce closure

(make-rail :contents (list args))
*global*
(lambda (result!)

(prompt&reply result!)
(read-normalize-print))))))))

Fig. 6. Unwrapping closure objects to Common Lisp functions.

invoke the stored function instead.7 What special action is performed by such
a function depends on whether the original closure is tagged as “non-reflective”
or “reflective”.

When unwrap is called with a “non-reflective” closure, we can map it to a
Common Lisp function that simply invokes the ProtoLisp interpreter by call-
ing reduce with the closure and the arguments received by that Common Lisp
function. We also need to pass an appropriate environment and continuation to
reduce. Since the arguments passed to the unwrapped procedure are already
normalized, it does not really matter which environment to pass, so passing
the global environment here is as good as any other choice. We can answer the
question which continuation to pass by making the following observation: In our
implementation of ProtoLisp, the only higher-order primitive procedures that
take other procedures as arguments and eventually call them are normalize and
reduce, which are the two main procedures of the interpreter and receive proce-
dures as their continuation parameters. See, for example, the call to normalize
in the definition of search in the previous section, which receives a non-reflective
ProtoLisp procedure as a continuation. These continuation procedures are ex-
pected to call other continuations, which will ultimately end up in displaying a
result in the repl and waiting for more s-expressions to evaluate, because the repl
is where any evaluation originates from. However, to ensure that the repl is not
accidentally exited by continuation procedures which simply return a value – for
example when calling (normalize ’(+ 1 1) global (lambda (res) res)) –
we pass a “fallback” continuation to reduce that simply ends up in the repl as
well (see Fig. 6).8

We stress, however, that unwrapping “non-reflective” closures in this way is
based on the assumption that the only higher-order primitive procedures which

7 In our implementation, we have used funcallable objects, as provided by CLOS [3],
to avoid having to update all the places in the code where functions are called.

8 If ProtoLisp is not used as a repl, but for example as an extension language inside
other applications, we have to use other “fallback” continuations here, which would
simply return the value to the original call site.



call their procedure arguments are indeed normalize and reduce. If we want
to provide other higher-order procedures as primitives, like for example mapcar,
we need to pass other environments and continuations in unwrap as special
cases. Fortunately, this is not necessary because such higher-order procedures
can always also be implemented in ProtoLisp itself.9

As a final case in unwrap, we need to consider how to map closures tagged as
“reflective” onto something appropriate in Common Lisp. However, there is no
way we can map a reflective closure to a Common Lisp function with the same
behavior because it would require that there are already similar procedurally
reflective capabilities available in Common Lisp itself, which is not the case.
Therefore, we just ensure that calling an unwrapped reflective closure signals
an error. We can still pass reflective procedures as arguments to primitive Pro-
toLisp procedures, but only to eventually receive them back in ProtoLisp code
again, where they have well-defined semantics. Since normalize and reduce are
the only higher-order primitive procedures in ProtoLisp that actually call their
procedure parameters, this is no big harm: We consider the possibility to reflect
on the program text, the environment and the continuation at some arbitrary
implementation-dependent place in the interpreter to be highly questionable.10

The inverse of the unwrap function is the wrap function, which maps a Com-
mon Lisp value to the corresponding ProtoLisp value (an internal structure).
The wrap function is used to turn the result of interpreting a primitive proce-
dure into a proper internal structure (see line 29 in Fig. 4). For example, given
a Common Lisp number, wrap returns an instance of the class numeral. When
passed a Common Lisp list, wrap returns a rail object. Given a Common Lisp
function, wrap returns a closure object which is tagged “primitive”. Given a
function object wrapping a closure, unwrap returns the closure. Similarly wrap
maps other Common Lisp values to appropriate internal structures.

Up, down & ’ As discussed in the section on structural reflection, ProtoLisp
is extended with ’, up and down for denoting internal structures. The procedure
up returns the internal structure of its argument, and is implemented as a prim-
itive procedure (see above) that calls the function wrap. The procedure down,
which returns the ProtoLisp value matching the given internal structure, is im-
plemented as a primitive procedure that calls the function unwrap. ’ is syntax
added for returning the result of internalizing a ProtoLisp s-expression.

wrap and unwrap also work with instances of the class handle. Handle objects
“wrap” structures that are already internal, by just storing references to the
wrapped objects. If wrap receives an internal structure, it just wraps it in a
handle object. If unwrap receives an instance of the class handle, it returns
whatever the handle object holds.

9 Primitive higher-order procedures may be interesting for efficiency reasons, though.
10 Note, however, that passing reflective procedures to the underlying implementation

can be supported by a “tower” of interpreters, and is actually one motivation for the
notion of reflective towers, which we discuss in the next section.



(defun reduce-reflective (proc! args env cont)
(let ((non-reflective-closure (de-reflect proc!)))

(normalize (body non-reflective-closure)
(bind-all (lexical-environment non-reflective-closure)

(argument-pattern non-reflective-closure)
(make-rail :contents (list args env cont)))

(lambda (result!)
(prompt&reply result!)
(read-normalize-print)))))

Fig. 7. Interpreting calls to lambda-reflect.

Lambda-reflect We also extend ProtoLisp with lambda-reflect to render
the temporary state of the interpreter explicit. As discussed, lambda-reflect
resembles lambda: When a call to lambda-reflect is interpreted, a closure is
created that is tagged “reflective”. When a call to a reflective procedure is in-
terpreted, it is turned into an equivalent non-reflective procedure which is called
instead. Furthermore, that procedure is passed the s-expression, the environ-
ment and the continuation with which the interpreter was parameterized when
interpreting the reflective procedure call.

In the implementation, we extend reduce with a case for recognizing reflec-
tive procedure calls and passing them on to reduce-reflective, whose code is
shown in Fig. 7. The function de-reflect turns a reflective closure into a reg-
ular closure by just changing its tag from “reflective” to “non-reflective”. Apart
from that, it has the same argument pattern, the same lexical environment and
the same body as the original reflective closure. The procedure bind-all ex-
tends the lexical environment of the closure by mapping its argument pattern to
the (unevaluated) arguments, the environment, and the continuation with which
reduce-reflective is called. Finally, the call to normalize triggers evaluating
the body of the closure in terms of the extended environment. The continuation
passed to normalize is the repl’s continuation from Fig. 2. When the body of
the reflective procedure contains a call to the continuation it receives as an ar-
gument, then the continuation in Fig. 7 will actually never be called. However
when the body of the reflective procedure does not call its continuation, then
the repl continuation will be (implicitly) called. Again, this is to avoid that the
repl is accidentally exited (like when unwrapping non-reflective closures).

3.7 The tower model

One of the most debated ideas of Smith’s account on reflection is the tower
model. In this model, 3-Lisp is implemented as an infinite stack of meta circu-
lar interpreters running one another. This solves some conceptual and technical
problems that arise when implementing procedural reflection in 3-Lisp. One such
problem is the following: Consider a reflective lambda where the continuation
passed to it is ultimately not called. In a naive implementation of 3-Lisp, eval-
uating a call to such a reflective lambda would result in exiting the 3-Lisp repl
and falling back to the implementation level, since the passed continuation in-
cludes the continuation of the ProtoLisp repl. Generally speaking, this is not



the desired functionality. Using an interpreter that implements the tower model,
calling a reflective lambda can be resolved by the interpreter that is running the
repl the programmer was interacting with at the time of the call. The only way
the programmer will get back to the original interpreter is when the continuation
is called inside the reflective lambda’s body. When the continuation is not called,
then the programmer just stays in the upper interpreter. This is referred to as
“being stuck” at a meta level [4]. As such there is no danger the programmer
falls back to the implementation level [6].

Problems like those can occur when there is reflective overlap, i.e. when a re-
flective language construct renders some part of the implementation explicit, but
also relies on it [2]. In our example, reflective lambdas render the continuation
explicit, but when it is not called inside its body, then the entire interpreta-
tion process is stopped. Tower models are generally believed to solve problems
introduced by reflective overlap. However, they are not the only solution. The
Scheme language, for example, is not designed as a tower, and though it intro-
duces call/cc to capture a continuation, not calling it will not result in exiting
Scheme, but it will just be implicitly called, no matter what. Our implementation
behaves similar in that respect.

3.8 Summary – A recipe for reflection

In the previous sections, we extended ProtoLisp with reflection, which makes
it possible to program at the level of the ProtoLisp implementation by writing
ProtoLisp programs. The steps we took for adding reflection to ProtoLisp can
be synthesized to a recipe for adding reflection to any programming language.

There are two parts to implementing structural reflection. First of all, one
needs to identify the ADTs in the implementation that are used for representing
programs, and expose them in the language itself. Secondly, one needs to equip
the language with a mechanism to turn programs into first-class entities. Iden-
tifying which ADTs are potential canditates for structural reflection is done by
looking at the possible outcomes of internalization (parsing) and normalization
(evaluation). Note that in porting the ADTs, we need to make it appear as if
they were implemented in the language itself. For adding structural reflection to
ProtoLisp, this means adding new primitive types and procedures wrapping the
ADTs that implement characters, numbers, procedures, and so on. The proce-
dure up and the ’ syntax enable getting hold of the internal representations of
programs. The procedure down turns programs into regular values again. Such
mechanisms are implemented by means of a wrap/unwrap mechanism that tags
internal structures in a way that ensures that the programmer can interface them
using the wrapped implementation procedures.

Procedural reflection is implemented by adding mechanisms that allow the
programmer to influence the normalization of a program at well-defined steps.
This includes pausing the normalization, inspecting and changing the processor
state at that time, and continuing the normalization. In ProtoLisp, we added
lambda-reflect, which allows defining reflective procedures. A reflective pro-
cedure is passed the state of the processor (an expression, an environment and



a continuation), which can be manipulated as regular data inside its body. To
proceed with the computation, the programmer needs to set the interpreter state
by calling the normalize procedure. In our implementation, lambda-reflect is
implemented as a special case in the interpreter, and normalize as a primitive
procedure that calls its counterpart in the actual implementation.

In the next section, we give an overview of some reflective programming lan-
guages, including both historical and contemporary approaches. Such approaches
are all more or less compatible with the recipe outlined above.

4 Related work

Historical overview Reflective facilities were already part of Lisp before Smith
introduced the concept of procedural reflection. Lisp 1.5 [7] provides a quote
mechanism that allows constructing Lisp programs on the fly at runtime. For
example, the Lisp 1.5 expression (let ((x 1)) (apply ’(lambda (y) (+ x
y)) (list 2))) returns 3: A list whose first element is the symbol lambda is
interpreted as a function, and since Lisp 1.5 is a dynamically scoped Lisp dialect,
the variable references see the dynamic bindings of the respective variables even
in the code constructed on the fly. (The quoted lambda expression in the example
may as well be the result of a computation.) This ability to construct and execute
code on the fly corresponds to Smith’s notion of structural reflection, where
procedures can be constructed and manipulated via up and down. Lisp 1.5 also
provides the ingredients of procedural reflection: An fexpr is a function that
gets unevaluated arguments passed as program text, and it is possible to define
fexprs as user programs. The alist provides access to the environment mapping
variables to values,11 and the “push down list” is the call stack (continuation)
that can also be accessed from within Lisp programs. Taken together, these
features correspond to the notion of reflective procedures in 3-Lisp. For example,
such reflective features were used to introduce the concept of advice [8].

Unfortunately, dynamic scoping is problematic when it is the default seman-
tics for Lisp. Especially it leads to the so-called “upward” and “downard funarg
problems” [9]. While they can be solved by dynamic closures and spaghetti
stacks to a certain degree, only the introduction of lexical closures in Scheme
fully solved all aspects of the underlying issues [10]. Lexical closures got picked
up in Common Lisp and most other Lisp dialects thereafter. However, lexical
closures make some of the aforementioned reflective features of Lisp 1.5 less
straightforward to integrate as well. 3-Lisp can be regarded as a reconceptual-
ization of such reflective facilities in the framework of a lexically scoped Lisp
dialect.

Current Lisp dialects, among which Scheme and Common Lisp are the most
widely used ones, typically provide only restricted subsets of structural reflec-
tion: Scheme’s eval and Common Lisp’s eval and compile can be used to turn
a quoted lambda expression into a function (similar to down), but they can-
not be enclosed in arbitrary lexical environments, only in global or statically
11 In Lisp 1.5, only one such environment exists.



predefined environments. There is also typically no construct corresponding to
up available that would allow retrieving the original definition of a function. In
terms of procedural reflection, neither Scheme nor Common Lisp allow defining
functions that receive unevaluated arguments as program text, neither Scheme
nor Common Lisp specify operators for reifying lexical environments, and only
Scheme provides call/cc for reifying the current continuation. Macros were in-
troduced into Lisp 1.5 in the 1960’s [11], and are considered to be an acceptable
and generally preferrable subset of reflecting on source code [12]. The difference
in that regard to reflective procedures, fexpr, and so on, is that macros cannot
be passed around as first-class values and are typically restricted from access-
ing runtime values during macro expansion. This allows compiling them away
before execution in compiled systems, as is mandated for example by current
Scheme and ANSI Common Lisp specifications [13, 14]. Useful applications of
first-class lexical environments in Scheme have been described in the literature
[15, 16], but the only Scheme implementation that seems to fully support first-
class environments at the time of writing this paper is Guile, and the only Lisp
implementation that seems to do so is clisp in interpreted mode.12

Wand and Friedman were the first to follow up on Smith’s ideas, and in
their research they concluded that the tower model unnecessarily introduces ex-
tra complexity to reflective programming. One of their first results is Brown, a
reflective variant of Scheme, which shows that implementing procedural reflec-
tion does not require a tower architecture [17]. In their explanations, Wand and
Friedman introduced the now widely used term reification, which is the process
of turning implementation structures into first class representations. However,
they differ from 3-Lisp by renouncing an explicit up/down mechanism. Brown in-
stead relies on Scheme’s quoting facilities as a “reification” mechanism, and the
up/down mechanism is dismissed as a “philosophical concern”. However, as we
discussed in Section 3.4, this mechanism is necessary for being able to denote the
internal representation of program values that cannot be identified by a string of
source text alone. Hence, because the up/down mechanism is missing, Brown’s
reification mechanism is restricted: It is for example impossible in Brown to get
hold of a closure. The contribution in this paper is the integration of an explicit
up/down mechanism with a tower-less implementation of 3-Lisp, and in doing
so, we introduced a correct semantics for wrapping and unwrapping reflective
functions (see Section 3.6).

While solving some problems, the tower also introduces new problems. Sup-
pose, for example, that the programmer modifies the normalize procedure so
that its calls are logged. If the normalize procedure is identical for all of the
interpreters in the tower, this implies that each call to normalize produces an
infinite number of logs. To deal with this, the Blond language, based on 3-Lisp, is
implemented as a tower where each interpreter (potentially) has a separate envi-

12 See http://www.gnu.org/software/guile/guile.html and http://clisp.cons.org/. Some
other Scheme implementations as well as the OpenLisp implementation of ISLISP
claim to support first-class environments as well, but failed in some of our tests.



ronment [18]. Finally, Asai et al. subsequently proposed a compilation framework
based on partial evaluation for implementing the tower model efficiently [19].

Analysis of reflective programming models There exist a great deal of
programming languages offering reflective facilities. Depending on the kinds of
reflective facilities they offer, and how these are implemented and used, we can
classify these facilities as being a variant of either 2-Lisp or 3-Lisp. As we dis-
cussed previously, 2-Lisp offers the programmer structural reflection, while 3-Lisp
grants procedural reflection. With structural reflection, it is possible to manipu-
late the internal representation of programs as if these were regular data. Using
structural reflection, the programmer can make structural changes to programs,
e.g. inline the code for specific function calls in a program or extend the body
of a closure with code for caching. What is important to note is that structural
changes to programs like these can be done without executing the program. As
such, compilation techniques could be employed to implement structural reflec-
tion, which is in general believed to be more efficient than a dynamic implemen-
tation, as is required for implementing certain kinds of procedural reflection.

3-Lisp extends 2-Lisp by offering the programmer access to the execution
context of a program. In 3-Lisp this execution context includes an environment
and a continuation. This allows, for example, implementing one’s own language
constructs for exception handling or a module system as a 3-Lisp program. The
execution context of a program is available only during program execution, and
this requires an implementation that operates at runtime. In what follows, we
give an overview of existing reflective programming languages. We briefly discuss
their model and whether they offer structural or procedural reflection. We also
investigate if the underlying model makes any explicit assumptions that exclude
procedural reflection, e.g. for efficiency reasons.

The CLOS Metaobject Protocol (MOP) is a specification of how major build-
ing blocks of the Common Lisp Object System are implemented in terms of
itself. It thus provides hooks to modify CLOS semantics by defining methods
on subclasses of standard metaclasses. Such meta-level methods get invoked by
conforming CLOS implementations, for example during the construction of class
and generic function objects, and during slot access and method dispatch. The
CLOS MOP is thus a reflective architecture, and is based on the model of proce-
dural reflection in the sense that the hooks get triggered at runtime, while these
aspects of a CLOS implementation are actually performed. As such, user-defined
meta-level methods can make their results depend on runtime values. The CLOS
MOP itself does not provide first-class representations of the execution context
(like the current environment or the current continuation), but these could in
principle be provided as orthogonal features. Later metaobject protocols tried to
push the boundaries closer to structural reflection by computing more and more
aspects of the object system before they get used, leading over hybrid systems
like Tiny CLOS, towards load-time [20] and compile-time metaobject protocols
[21], where all aspects are computed before they are ever used. At closer inspec-



tion, one can notice that the CLOS MOP is already a hybrid system, although
with an emphasis on procedural elements.

The CLOS MOP can be understood as a combination of procedural reflec-
tion as in 3-Lisp together with Smalltalk’s approach to object-oriented program-
ming, where everything is an instance of a class, including classes themselves.
Smalltalk’s metaclasses provide a form of structural reflection, which for exam-
ple allows manipulating method dictionaries, but lack meta-level protocols that
can be intercepted in a procedurally reflective way (with the handling of the
“message not understood” exception being a notable exception) [22]. However,
Smalltalk provides first-class access to the current call stack via thisContext,
which roughly corresponds to a combination of the environment and the con-
tinuation parameters in reflective lambdas [23]. In [24] Ducasse provides an
overview of techniques, based on Smalltalk’s reflective capabilities, that can be
used to define a message passing control.

Self provides structural reflection via mirrors [25]. It can actually be argued
that mirrors are a rediscovery of up and down from 2-Lisp, but put in an object-
oriented setting. However, mirrors provide new and interesting motivations for
a strict separation into internal and external representations. Especially, mirrors
allow for multiple different internal representations of the same external object.
For example, this can be interesting in distributed systems, where one internal
representation may yield details of the remote reference to a remote object, while
another one may yield details about the remote object itself. AmbientTalk/2 is
based on mirrors as well, but extends them with mirages that provide a form of
(object-oriented) procedural reflection [26].

Aspect-oriented programming [27] extends existing programming models with
the means to “modify program join points”. Depending on the aspect model at
hand, program join points are defined as points in the execution of a program,
or as structural program entities. In an object-oriented setting, examples of the
former are “message sends” and “slot accesses”, examples of the latter are classes
and methods. The idea is that the programmer can make changes to program join
points without having to change their sources, but by defining distinct program
modules called “aspects”. This property is called obliviousness and is believed
to improve the quality of software in terms of better modularity.

One of the most influential aspect languages is AspectJ [28], which facilitates
adding methods to classes, but also supports advising methods with logging code.
Aspects are defined in terms of pointcut-advice pairs: Pointcuts are declarative
queries over program join points, whereas advice consists of pieces of Java code
that need to be integrated with the join points matched by a pointcut. AspectJ’s
pointcut language is a collection of predicates for detecting structural patterns
in source code, like the names of classes or methods, where code needs to be
inserted. AOP is a reflective approach in the sense that aspects are expressed as
programs about programs, but unlike reflection, conventional AOP leaves out a
model of the language implementation, which greatly reduces its expressiveness.



5 Conclusions

In this paper, we have given an overview of the notion of computational reflec-
tion, as introduced by Brian Smith in the early 1980’s. His contributions include
the notions of structural and procedural reflection, as well as a recipe for adding
reflection not only to Lisp dialects, but to programming languages in general.
We have a reconstructed an implementation of all the major elements of 3-Lisp,
a procedurally reflective laguage, based on this recipe. We have chosen Common
Lisp as the basis for our implementation, a modern Lisp dialect, which should
make these contributions more accessible to a new and wider audience. We have
finally used the terminological framework of computational reflection to analyze
other metaprogramming and reflective approaches.

History shows that programming language designers always struggle to find
the right balance between hiding language implementation details and making
them accessible from within those languages. Apparently, it is inevitable that
reflective features find their ways into programming languages, whether their
designers are aware of this choice or not, because reflection is indeed a good
compromise between hiding and revealing such details. On the other hand, de-
signers and implementors have also always strived to minimize the cost of reflec-
tion by providing only subsets of such features. As we discussed in our overview
of reflective programming models, most approaches offer only restricted sub-
sets of structural reflection, because efficiency seems more straightforward to be
achieved in this case using compilation techniques. Nevertheless, procedurally
reflective features also always sneak in, but typically severely scaled down and
poorly integrated with structural reflection. Due to such compromises, however,
the complexity of writing reflective programs seems to increase, which in turn
fortifies the view that reflection is ’dangerous’ and should be provided in only
small doses. Unfortunately, Smith’s original account of computational reflection
has been lost along the road.

We are convinced that it is time to rediscover and rethink reflection from
the ground up, without any such compromises. Modern hardware is finally fast
enough to effectively reduce the necessity to focus on efficiency alone. The rise
in popularity of scripting languages in the last two decades shows that program-
mers are more and more interested in the flexibility offered by dynamicity and
reflection, rather than the limiting constraints of staticity and encapsulation. To
the contrary, we need more, not less reflection: For example, parallel program-
ming models for multicore processors and distributed systems require new ways
to toggle between absorbing and revealing details of language constructs, such
that programs can better reason about events in the past, present and future of
a computation in process. Brian Smith’s notion of computational reflection is an
invaluable basis to start from for these future investigations.
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A Source code

;;; config.lsp

(defpackage 3-proto-lisp
(:use common-lisp clos)
(:shadow boolean atom length prep first rest nth body reduce)
(:export read-normalize-print normalize-from-string)
(:nicknames 3pl))

#|
Copyright (c) 2007, 2008 Charlotte Herzeel

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

|#



;;; repl.lsp

(in-package 3-proto-lisp)

(defun read-normalize-print ()
(declare (special *global*))
(normalize (prompt&read)

*global*
(lambda (result!)

(prompt&reply result!)
(read-normalize-print))))

(defun prompt&read ()
(format t ">")
(three-lisp-read-and-parse))

(defun prompt&reply (result)
(format t "~%~a~&" (print-to-string result)))

;; Normalize from string

;; Flag to see if in repl mode

(defparameter *repl-mode* T)

(defun normalize-from-string (string)
(let ((*repl-mode* nil))

(normalize (internalize (read-from-string string)) *global* (lambda (result!) result!))))

(defun create-meta-continuation ()
(if *repl-mode*

(lambda (result!)
(prompt&reply result!)
(read-normalize-print))

(function unwrap)))

;; Loading ProtoLisp code from a file

(defun load-proto-lisp-file (filename-as-string)
(declare (special *global*))
(let ((path (make-pathname :name filename-as-string)))

(with-open-file (str path :direction :input)
(loop for line = (read str nil ’eof)

until (eql line ’eof)
do (normalize (internalize line) *global* (lambda (result!) result!))))))



;;; externalization.lsp

(in-package 3-proto-lisp)

;; Externalization

(defmethod external-type ((numeral numeral))
’numeral)

(defmethod external-type ((number number))
’number)

(defmethod external-type ((cl-boolean cl-boolean))
’truth-value)

(defmethod external-type ((closure closure))
’closure)

(defmethod external-type ((function function))
’function)

(defmethod external-type ((rail rail))
’rail)

(defmethod external-type ((wrapped-cl-list wrapped-cl-list))
’sequence)

(defmethod external-type ((atom atom))
’atom)

(defmethod external-type ((symbol symbol))
’symbol)

(defmethod external-type ((pair pair))
’pair)

(defmethod external-type ((cons cons))
’procedure-call)

(defmethod external-type ((handle handle))
’handle)

(defmethod print-to-string ((handle handle))
(if (eql (class-of handle) (find-class ’handle))

(format nil "?~a" (print-to-string (cl-value handle)))
(format nil "~s" (cl-value handle))))

(defmethod print-to-string ((boolean boolean))
(cond ((eql (unwrap boolean) *cl-true*) "$T")

((eql (unwrap boolean) *cl-false*) "$F")
(t (error "print-to-string: Trying to print erronous boolean."))))

(defmethod print-to-string ((wrapped-cl-list wrapped-cl-list))
(format nil "~s" (cl-list wrapped-cl-list)))

(defmethod print-to-string ((rail rail))
(with-output-to-string (s)

(format s "[ ")
(loop for handle in (cl-list (unwrap rail))

do (format s (print-to-string handle)))
(format s " ]")))

(defmethod print-to-string (smth)
(format nil "~a" smth))

(defmethod print-to-string ((primitive-closure primitive-closure))
"<primitive procedure>")



(defmethod print-to-string ((reflective-closure reflective-closure))
"<reflective procedure>")

(defmethod print-to-string ((closure closure))
"<simple procedure>")



;;; internalization.lsp

(in-package 3-proto-lisp)

;; Added syntax

;; Rails
(set-macro-character
#\] #’(lambda (stream char)

(declare (ignore char))
(read stream t nil t) nil))

(set-macro-character
#\[ #’(lambda (stream char)

(declare (ignore char))
(make-instance ’wrapped-cl-list :cl-list (read-delimited-list #\] stream t))))

;; Booleans

(defmethod identify-cl-boolean ((symbol (eql ’T)))
*cl-true*)

(defmethod identify-cl-boolean ((symbol (eql ’F)))
*cl-false*)

(defmethod identify-cl-boolean (smth)
(error "Error while parsing ~s, $ is reserved syntax for booleans." smth))

(set-macro-character
#\$ #’(lambda (stream char)

(declare (ignore char))
(identify-cl-boolean (read stream t nil t))))

;; Handle (cf ’)
;; In order not to confuse Common Lisp, we use ^ instead of ’ here.
(set-macro-character
#\^ #’(lambda (stream char)

(declare (ignore char))
(internalize (read stream t nil t))))

;; Internalize wraps CL values to internal structures
(defmethod internalize ((handle handle))

(make-instance ’handle :cl-value handle))

(defmethod internalize ((number number))
(make-instance ’numeral :cl-value number))

(defmethod internalize ((cl-boolean cl-boolean))
(make-instance ’boolean :cl-value cl-boolean))

(defmethod internalize ((wrapped-cl-list wrapped-cl-list))
(make-instance ’rail :cl-value (make-instance ’wrapped-cl-list

:cl-list (cl-list wrapped-cl-list))))

(defmethod internalize ((symbol symbol))
(make-instance ’atom :cl-value symbol))

(defmethod internalize ((cons cons))
(make-instance ’pair :cl-value cons))



;;; normalization.lsp

(in-package 3-proto-lisp)

;; Normalization

;; Environments

(defclass environment (handle)
((bindings :initarg :bindings :initform ’() :accessor bindings)))

(defmethod environment-p ((environment environment))
T)

(defmethod environment-p (smth)
nil)

(defmethod ccons ((atom atom) (environment environment) (rail rail) pair)
(case (unwrap atom)

(simple
(make-instance ’closure
:name ’anonymous :lexical-environment environment :argument-pattern rail :body pair))

(reflect
(make-instance ’reflective-closure
:name ’anonymous :lexical-environment environment :argument-pattern rail :body pair))

(t
(error "ccons: unknown procedure type: ~s" (unwrap atom)))))

(defmethod print-to-string ((environment environment))
"<environment>")

(defmethod make-mapping ((atom atom) value)
(list atom value ’mapping))

(defmethod mapping-value (mapping)
(if (and (listp mapping) (eql (car (last mapping)) ’mapping))

(second mapping)
(error "Mapping expected.")))

(defmethod set-binding ((environment environment) (atom atom) (handle handle))
(push (make-mapping atom handle) (bindings environment)))

(defmethod add-binding ((environment environment) (atom atom) (handle handle))
(make-instance ’environment

:bindings (cons (make-mapping atom handle) (bindings environment))))

(defmethod bind ((environment environment) (argument-pattern rail) (arguments rail))
(cond ((empty-p argument-pattern) environment)

((= (length argument-pattern) (length arguments))
(bind (add-binding environment (first argument-pattern) (first arguments))

(rest argument-pattern) (rest arguments)))
(t
(error "bind: Function called with the wrong number of arguments."))))

(defmethod binding ((atom atom) (environment environment))
(let ((mapping (find (unwrap atom) (bindings environment)

:key (lambda (atom+value) (unwrap (car atom+value))))))
(if (null mapping)

(error "binding: variable ~s unbound in env." (unwrap atom))
(mapping-value mapping))))

;; Global environment

(defparameter *global* (make-instance ’environment))



;; Normalize

(defun normalize (internal-structure environment continuation)
(cond ((normal-p internal-structure)

(funcall continuation internal-structure))
((atom-p internal-structure)
(funcall continuation (binding internal-structure environment)))

((rail-p internal-structure)
(normalize-rail internal-structure environment continuation))

((pair-p internal-structure)
(reduce (pcar internal-structure) (pcdr internal-structure)

environment continuation))
(t
(error "normalize: Error trying to normalize non internal structure ~s"

internal-structure))))

(defun normal-p (internal-structure)
(if (rail-p internal-structure)

(normal-rail-p internal-structure)
(and (not (atom-p internal-structure))

(not (pair-p internal-structure)))))

(defmethod normal-rail-p ((rail rail))
(or (empty-p rail)

(and (normal-p (first rail))
(normal-rail-p (rest rail)))))

(defun normalize-rail (rail environment continuation)
(if (empty-p rail)

(funcall continuation (rcons))
(normalize (first rail)

environment
(lambda (first!)

(normalize-rail (rest rail)
environment
(lambda (rest!)

(funcall continuation (prep first! rest!))))))))

(defun reduce (procedure arguments environment continuation)
(normalize procedure

environment
(lambda (procedure!)

(cond ((reflective-p procedure!)
(reduce-reflective procedure! arguments environment continuation))

((abnormal-p procedure!)
(reduce-abnormal procedure! arguments environment continuation))

(t
(normalize arguments

environment
(lambda (arguments!)

(if (primitive-p procedure!)
(funcall continuation

(wrap (apply (unwrap procedure!)
(cl-list (unwrap arguments!)))))

(normalize (body procedure!)
(bind (lexical-environment procedure!)

(argument-pattern procedure!) arguments!)
continuation)))))))))



(defun reduce-reflective (procedure! arguments environment continuation)
(let ((non-reflective-closure (de-reflect procedure!)))

(normalize (body non-reflective-closure)
(bind (lexical-environment non-reflective-closure)

(argument-pattern non-reflective-closure)
(wrap (make-instance ’wrapped-cl-list

:cl-list (list environment continuation arguments))))
(create-meta-continuation))))

(defun reduce-abnormal (procedure! arguments environment continuation)
(ecase (name procedure!)

(set (reduce-set arguments environment continuation))
(lambda (reduce-lambda ’closure arguments environment continuation))
(lambda-reflect (reduce-lambda ’reflective-closure arguments environment continuation))
(if (reduce-if arguments environment continuation))
(apply (reduce-apply arguments environment continuation))
(apply-abnormal (reduce-apply-abnormal arguments environment continuation))))

(defun reduce-set (arguments environment continuation)
(declare (special *global*))
(let ((atom (first arguments)) ;; do not normalize the symbol

(expression (first (rest arguments)))) ;; normalize the expression
(normalize expression environment

(lambda (expression!)
(set-binding *global* atom expression!)
(funcall continuation (wrap ’ok))))))

(defun reduce-if (arguments environment continuation)
(let ((condition (first arguments))

(consequent (first (rest arguments)))
(antesequent (first (rest (rest arguments)))))

(normalize condition environment
(lambda (condition!)

(if (cl-bool (unwrap condition!)) ;; Not Lisp-style bools
(normalize consequent

environment
(lambda (consequent!)

(funcall continuation consequent!)))
(normalize antesequent

environment
(lambda (antesequent!)

(funcall continuation antesequent!))))))))

(defun reduce-lambda (closure-class-name arguments environment continuation)
(let ((argument-pattern (first arguments))

(body (first (rest arguments))))
(funcall continuation

(make-instance closure-class-name
:name ’anonymous
:body body
:argument-pattern
(wrap (make-instance ’wrapped-cl-list

:cl-list (unwrap argument-pattern)))
:lexical-environment environment))))

(defmethod de-reflect ((reflective-closure reflective-closure))
(make-instance ’closure

:name (name reflective-closure)
:argument-pattern (argument-pattern reflective-closure)
:body (body reflective-closure)
:lexical-environment (lexical-environment reflective-closure)))

(defun reduce-apply (arguments environment continuation) ;; apply takes a symbol and a rail
(normalize arguments environment

(lambda (arguments!)
(reduce (first arguments!) (unwrap (first (rest arguments!)))

environment continuation))))



(defun reduce-apply-abnormal (arguments environment continuation)
(normalize arguments environment

(lambda (arguments!)
(reduce (first arguments!)

(unwrap (first (rest (rest arguments!))))
(unwrap (first (rest arguments!)))
continuation))))



;;; structural-field.lsp

(in-package 3-proto-lisp)

;; Structural field

;; Classes implementing the ProtoLisp types.
;; Instances of these classes are the internal representation of ProtoLisp values.
;; Instances of these classes are called internal structures.

(defclass handle ()
((cl-value :initarg :cl-value :accessor cl-value)))

;; NUMBER

(defclass numeral (handle)
())

;; BOOLEAN

(defclass boolean (handle)
())

;; CLOSURE

(defclass closure (handle)
((body :initarg :body :accessor body :initform nil)
(lexical-envrionment :initarg :lexical-environment :accessor lexical-environment :initform nil)
(name :initarg :name :accessor name :initform nil) ; for debugging
(argument-pattern :initarg :argument-pattern :accessor argument-pattern :initform nil)))

(defclass primitive-closure (closure)
())

(defclass reflective-closure (closure)
())

;; Abnormal closures are primitive closures whose arguments are not all normalized

(defclass abnormal-closure (primitive-closure)
())

;; RAIL

(defclass rail (handle)
())

;; Helper class, for representing rails in CL

(defclass wrapped-cl-list ()
((cl-list :initarg :cl-list :accessor cl-list)))

;; ATOM

(defclass atom (handle)
())

(defclass pair (handle)
())

;; Operations boolean

(defmethod boolean-p ((boolean boolean))
T)

(defmethod boolean-p (smth)
nil)



;; Operations atom

(defmethod atom-p ((atom atom))
T)

(defmethod atom-p (smth)
nil)

;; Operations numeral

(defmethod numeral-p ((numeral numeral))
T)

(defmethod numeral-p (smth)
nil)

;; Operations pair

(defmethod pair-p ((pair pair))
T)

(defmethod pair-p (smth)
nil)

;; Operations closure

(defmethod primitive-p ((primitive-closure primitive-closure))
T)

(defmethod primitive-p (smth)
nil)

(defmethod reflective-p ((reflective-closure reflective-closure))
T)

(defmethod reflective-p (smth)
nil)

(defmethod abnormal-p ((abnormal-closure abnormal-closure))
T)

(defmethod abnormal-p (smth)
nil)

(defmethod closure-p ((closure closure))
T)

(defmethod closure-p (smth)
nil)

;; Operations pair

(defmethod pcar ((pair pair))
(wrap (car (unwrap pair))))

(defmethod pcdr ((pair pair))
;; returns a rail
(wrap (make-instance ’wrapped-cl-list :cl-list (cdr (unwrap pair)))))

(defmethod pcons ((handle1 handle) (handle2 handle))
(wrap (cons (unwrap handle1) (unwrap handle2))))

;; Operations rail

(defmethod rail-p ((rail rail))
T)



(defmethod rail-p (smth)
nil)

(defmethod rcons (&rest list-of-structures)
(wrap (make-instance ’wrapped-cl-list :cl-list (mapcar (function unwrap) list-of-structures))))

(defmethod scons (&rest list-of-structures)
(make-instance ’wrapped-cl-list :cl-list list-of-structures))

(defmethod pcons ((handle handle) (rail rail))
(wrap (cons (unwrap handle) (cl-list (unwrap rail)))))

(defmethod prep ((handle handle) (rail rail))
(wrap (make-instance ’wrapped-cl-list :cl-list (cons (unwrap handle) (cl-list (unwrap rail))))))

(defmethod prep (smth (wrapped-cl-list wrapped-cl-list))
(make-instance ’wrapped-cl-list :cl-list (cons smth (cl-list wrapped-cl-list))))

(defmethod length ((rail rail))
(cl:length (cl-list (unwrap rail))))

(defmethod nth (nr (rail rail))
(wrap (cl:nth nr (cl-list (unwrap rail)))))

(defmethod nth (nr (wrapped-cl-list wrapped-cl-list))
(cl:nth nr (cl-list wrapped-cl-list)))

(defmethod pcar ((rail rail))
(nth 0 rail))

(defmethod pcdr ((rail rail))
(tail 1 rail))

(defmethod tail (nr (rail rail))
(wrap (make-instance ’wrapped-cl-list :cl-list (cl:nthcdr nr (cl-list (unwrap rail))))))

(defmethod tail (nr (wrapped-cl-list wrapped-cl-list))
(make-instance ’wrapped-cl-list :cl-list (cl:nthcdr nr (cl-list wrapped-cl-list))))

(defmethod first ((rail rail))
(wrap (cl:first (cl-list (unwrap rail)))))

(defmethod rest ((rail rail))
(wrap (make-instance ’wrapped-cl-list :cl-list (cl:rest (cl-list (unwrap rail))))))

(defmethod rest ((wrapped-cl-list wrapped-cl-list))
(make-instance ’wrapped-cl-list :cl-list (cl:rest (cl-list wrapped-cl-list))))

(defmethod empty-p ((rail rail))
(null (cl-list (unwrap rail))))

(defmethod empty-p ((wrapped-cl-list wrapped-cl-list))
(null (cl-list wrapped-cl-list)))

;; Equality

(defmethod proto-lisp= ((handle1 handle) (handle2 handle))
(proto-lisp= (unwrap handle1) (unwrap handle2)))

(defmethod proto-lisp= ((rail1 rail) (rail2 rail))
(declare (special *cl-false*))
*cl-false*)

(defmethod proto-lisp= ((handle1 handle) smth)
(declare (special *cl-false*))
*cl-false*)



(defmethod proto-lisp= (smth (handle1 handle))
(declare (special *cl-false*))
*cl-false*)

(defmethod proto-lisp= (smth1 smth2)
(declare (special *cl-true* *cl-false*))
(if (equal smth1 smth2)

*cl-true*
*cl-false*))

;; Internalization & Parsing

;; Reads from the standard input, these are plain CL values, which are mapped onto ProtoLisp values.
;; Most syntax of ProtoLisp overlaps with CL’s syntax, for other cases there is a read macro.

(defun three-lisp-read-and-parse ()
(let ((input (read)))

(internalize input)))

;; Helper classes because syntax per type is unique in ProtoLisp, but not in CL.

(defclass cl-boolean ()
())

(defparameter *cl-true* (make-instance ’cl-boolean))
(defparameter *cl-false* (make-instance ’cl-boolean))

(defmethod cl-bool ((obj (eql *cl-true*)))
T)

(defmethod cl-bool ((obj (eql *cl-false*)))
nil)

(defmethod cl-bool (smth)
(error "cl-bool: ~s is not either *cl-true* or cl-false" smth))

(defun cl->cl-bool (smth)
(if smth

*cl-true*
*cl-false*))

(defmethod proto-lisp= ((smth1 wrapped-cl-list) (smth2 wrapped-cl-list))
(if (equal (cl-list smth1) (cl-list smth2))

*cl-true*
*cl-false*))

;; sequence equivalent
(defmethod length ((wrapped-cl-list wrapped-cl-list))

(cl:length (cl-list wrapped-cl-list)))

;; Wrapping and Unwrapping

(defclass cl-closure ()
((3l-closure :initarg :closure :reader closure))
(:metaclass funcallable-standard-class))

(defmethod cl-closure-p ((cl-closure cl-closure))
T)

(defmethod cl-closure-p (smth)
nil)

(defmethod wrap ((cl-closure cl-closure))
(closure cl-closure))

(defmethod wrap (smth)
(internalize smth))



(defmethod wrap ((function function))
(make-instance ’primitive-closure :cl-value function))

(defmethod unwrap ((handle handle))
(cl-value handle))

(defmethod unwrap ((primitive-closure primitive-closure))
(cl-value primitive-closure))

(defmethod unwrap ((reflective-closure reflective-closure))
(let ((cl-closure (make-instance ’cl-closure :closure reflective-closure)))

(set-funcallable-instance-function
cl-closure
(lambda (&rest args)

(declare (ignore args))
(error "Don’t call reflective closures within Common Lisp code.")))

cl-closure))

(defmethod unwrap ((closure closure))
(declare (special *global*))
(let ((cl-closure (make-instance ’cl-closure :closure closure)))

(set-funcallable-instance-function
cl-closure
(lambda (args)

(reduce closure
(make-instance ’rail

:cl-value (make-instance ’wrapped-cl-list :cl-list (list args)))
*global*
(create-meta-continuation))))

cl-closure))



;;; primitives.lsp

(in-package 3-proto-lisp)

;; Primitives

(defun set-primitive (name lambda)
(declare (special *global*))
(set-binding *global* (wrap name) (wrap lambda)))

(defun set-primitive-abnormal (name lambda)
(declare (special *global*))
(declare (special *cl-false*))
(set-binding *global* (wrap name)

(make-instance ’abnormal-closure
:body lambda :name name :cl-value (wrap *cl-false*))))

;; arithmetic
(set-primitive ’+ (function +))
(set-primitive ’- (function -))
(set-primitive ’* (function *))
(set-primitive ’/ (function /))
(set-primitive ’= (function proto-lisp=))
(set-primitive ’< (lambda (cl-val1 cl-val2) (cl->cl-bool (< cl-val1 cl-val2))))
(set-primitive ’> (lambda (cl-val1 cl-val2) (cl->cl-bool (> cl-val1 cl-val2))))
;; printing
(set-primitive ’print (function print))
;; pair
(set-primitive ’pcar (function pcar))
(set-primitive ’pcdr (function pcdr))
(set-primitive ’pcons (function pcons))
;; rails and sequences
(set-primitive ’rcons (function rcons))
(set-primitive ’scons (function scons))
(set-primitive ’prep (function prep))
(set-primitive ’length (function length))
(set-primitive ’nth (function nth))
(set-primitive ’tail (function tail))
(set-primitive ’empty (lambda (rail) (cl->cl-bool (empty-p rail))))
;; closure
(set-primitive ’body (function body))
(set-primitive ’pattern (function argument-pattern))
(set-primitive ’environment (function lexical-environment))
(set-primitive ’ccons (function ccons))
;; atoms
(set-primitive ’acons (function gensym))
;; typing
(set-primitive ’type (function external-type))
(set-primitive ’primitive (lambda (closure) (cl->cl-bool (primitive-p closure))))
(set-primitive ’reflective (lambda (closure) (cl->cl-bool (reflective-p closure))))
;; up & down
(set-primitive ’up (function wrap))
(set-primitive ’down (function unwrap))
;; abnormal primitives, i.e. primitives whose args are not normalized
(set-primitive-abnormal
’set
(lambda (&rest args) (declare (ignore args)) (error "Trying to call set")))

(set-primitive-abnormal
’lambda
(lambda (&rest args) (declare (ignore args)) (error "Trying to call lambda")))

(set-primitive-abnormal
’lambda-reflect
(lambda (&rest args) (declare (ignore args)) (error "Trying to call lambda-reflect")))

(set-primitive-abnormal
’if
(lambda (&rest args) (declare (ignore args)) (error "Trying to call if")))



(set-primitive-abnormal
’apply
(lambda (&rest args) (declare (ignore args)) (error "Trying to call apply")))

(set-primitive-abnormal
’apply-abnormal
(lambda (&rest args) (declare (ignore args)) (error "Trying to call apply-abnormal")))

;; global environment
(set-primitive ’global *global*)
(set-primitive ’binding (function binding))
(set-primitive ’bind (function bind))
;; normalize
(set-primitive ’normalize (function normalize))


